42,640 research outputs found

    Efficient Scene Text Localization and Recognition with Local Character Refinement

    Full text link
    An unconstrained end-to-end text localization and recognition method is presented. The method detects initial text hypothesis in a single pass by an efficient region-based method and subsequently refines the text hypothesis using a more robust local text model, which deviates from the common assumption of region-based methods that all characters are detected as connected components. Additionally, a novel feature based on character stroke area estimation is introduced. The feature is efficiently computed from a region distance map, it is invariant to scaling and rotations and allows to efficiently detect text regions regardless of what portion of text they capture. The method runs in real time and achieves state-of-the-art text localization and recognition results on the ICDAR 2013 Robust Reading dataset

    Screen Content Image Segmentation Using Sparse-Smooth Decomposition

    Full text link
    Sparse decomposition has been extensively used for different applications including signal compression and denoising and document analysis. In this paper, sparse decomposition is used for image segmentation. The proposed algorithm separates the background and foreground using a sparse-smooth decomposition technique such that the smooth and sparse components correspond to the background and foreground respectively. This algorithm is tested on several test images from HEVC test sequences and is shown to have superior performance over other methods, such as the hierarchical k-means clustering in DjVu. This segmentation algorithm can also be used for text extraction, video compression and medical image segmentation.Comment: Asilomar Conference on Signals, Systems and Computers, IEEE, 2015, (to Appear

    Weakly Supervised Action Learning with RNN based Fine-to-coarse Modeling

    Full text link
    We present an approach for weakly supervised learning of human actions. Given a set of videos and an ordered list of the occurring actions, the goal is to infer start and end frames of the related action classes within the video and to train the respective action classifiers without any need for hand labeled frame boundaries. To address this task, we propose a combination of a discriminative representation of subactions, modeled by a recurrent neural network, and a coarse probabilistic model to allow for a temporal alignment and inference over long sequences. While this system alone already generates good results, we show that the performance can be further improved by approximating the number of subactions to the characteristics of the different action classes. To this end, we adapt the number of subaction classes by iterating realignment and reestimation during training. The proposed system is evaluated on two benchmark datasets, the Breakfast and the Hollywood extended dataset, showing a competitive performance on various weak learning tasks such as temporal action segmentation and action alignment
    • …
    corecore