3 research outputs found

    Investigating word affect features and fusion of probabilistic predictions incorporating uncertainty in AVEC 2017

    Full text link
    © 2017 Association for Computing Machinery. Predicting emotion intensity and severity of depression are both challenging and important problems within the broader field of affective computing. As part of the AVEC 2017, we developed a number of systems to accomplish these tasks. In particular, word affect features, which derive human affect ratings (e.g. arousal and valence) from transcripts, were investigated for predicting depression severity and liking, showing great promise. A simple system based on the word affect features achieved an RMSE of 6.02 on the test set, yielding a relative improvement of 13.6% over the baseline. For the emotion prediction sub-challenge, we investigated multimodal fusion, which incorporated a measure of uncertainty associated with each prediction within an Output-Associative fusion framework for arousal and valence prediction, whilst liking prediction systems mainly focused on text-based features. Our best emotion prediction systems provided significant relative improvements over the baseline on the test set of 39.5%, 17.6%, and 29.3% for arousal, valence, and liking. Of particular note is that consistent improvements were observed when incorporating prediction uncertainty across various system configurations for predicting arousal and valence, suggesting the importance of taking into consideration prediction uncertainty for fusion and more broadly the advantages of probabilistic predictions

    An Ordinal Approach to Affective Computing

    Full text link
    Both depression prediction and emotion recognition systems are often based on ordinal ground truth due to subjectively annotated datasets. Yet, both have so far been posed as classification or regression problems. These naive approaches have fundamental issues because they are not focused on ordering, unlike ordinal regression, which is the most appropriate for truly ordinal ground truth. Ordinal regression to date offers comparatively fewer, more limited methods when compared with other branches in machine learning, and its usage has been limited to specific research domains. Accordingly, this thesis presents investigations into ordinal approaches for affective computing by describing a consistent framework to understand all ordinal system designs, proposing ordinal systems for large datasets, and introducing tools and principles to select suitable system designs and evaluation methods. First, three learning approaches are compared using the support vector framework to establish the empirical advantages of ordinal regression, which is lacking from the current literature. Results on depression and emotion corpora indicate that ordinal regression with proper tuning can improve existing depression and emotion systems. Ordinal logistic regression (OLR), which is an extension of logistic regression for ordinal scales, contributes to a number of model structures, from which the best structure must be chosen. Exploiting the newly proposed computationally efficient greedy algorithm for model structure selection (GREP), OLR outperformed or was comparable with state-of-the-art depression systems on two benchmark depression speech datasets. Deep learning has dominated many affective computing fields, and hence ordinal deep learning is an attractive prospect. However, it is under-studied even in the machine learning literature, which motivates an in-depth analysis of appropriate network architectures and loss functions. One of the significant outcomes of this analysis is the introduction of RankCNet, a novel ordinal network which utilises a surrogate loss function of rank correlation. Not only the modelling algorithm but the choice of evaluation measure depends on the nature of the ground truth. Rank correlation measures, which are sensitive to ordering, are more apt for ordinal problems than common classification or regression measures that ignore ordering information. Although rank-based evaluation for ordinal problems is not new, so far in affective computing, ordinality of the ground truth has been widely ignored during evaluation. Hence, a systematic analysis in the affective computing context is presented, to provide clarity and encourage careful choice of evaluation measures. Another contribution is a neural network framework with a novel multi-term loss function to assess the ordinality of ordinally-annotated datasets, which can guide the selection of suitable learning and evaluation methods. Experiments on multiple synthetic and affective speech datasets reveal that the proposed system can offer reliable and meaningful predictions about the ordinality of a given dataset. Overall, the novel contributions and findings presented in this thesis not only improve prediction accuracy but also encourage future research towards ordinal affective computing: a different paradigm, but often the most appropriate
    corecore