13,271 research outputs found

    Fast, invariant representation for human action in the visual system

    Get PDF
    Humans can effortlessly recognize others' actions in the presence of complex transformations, such as changes in viewpoint. Several studies have located the regions in the brain involved in invariant action recognition, however, the underlying neural computations remain poorly understood. We use magnetoencephalography (MEG) decoding and a dataset of well-controlled, naturalistic videos of five actions (run, walk, jump, eat, drink) performed by different actors at different viewpoints to study the computational steps used to recognize actions across complex transformations. In particular, we ask when the brain discounts changes in 3D viewpoint relative to when it initially discriminates between actions. We measure the latency difference between invariant and non-invariant action decoding when subjects view full videos as well as form-depleted and motion-depleted stimuli. Our results show no difference in decoding latency or temporal profile between invariant and non-invariant action recognition in full videos. However, when either form or motion information is removed from the stimulus set, we observe a decrease and delay in invariant action decoding. Our results suggest that the brain recognizes actions and builds invariance to complex transformations at the same time, and that both form and motion information are crucial for fast, invariant action recognition

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Statistical Analysis of Dynamic Actions

    Get PDF
    Real-world action recognition applications require the development of systems which are fast, can handle a large variety of actions without a priori knowledge of the type of actions, need a minimal number of parameters, and necessitate as short as possible learning stage. In this paper, we suggest such an approach. We regard dynamic activities as long-term temporal objects, which are characterized by spatio-temporal features at multiple temporal scales. Based on this, we design a simple statistical distance measure between video sequences which captures the similarities in their behavioral content. This measure is nonparametric and can thus handle a wide range of complex dynamic actions. Having a behavior-based distance measure between sequences, we use it for a variety of tasks, including: video indexing, temporal segmentation, and action-based video clustering. These tasks are performed without prior knowledge of the types of actions, their models, or their temporal extents

    RGB-D-based Action Recognition Datasets: A Survey

    Get PDF
    Human action recognition from RGB-D (Red, Green, Blue and Depth) data has attracted increasing attention since the first work reported in 2010. Over this period, many benchmark datasets have been created to facilitate the development and evaluation of new algorithms. This raises the question of which dataset to select and how to use it in providing a fair and objective comparative evaluation against state-of-the-art methods. To address this issue, this paper provides a comprehensive review of the most commonly used action recognition related RGB-D video datasets, including 27 single-view datasets, 10 multi-view datasets, and 7 multi-person datasets. The detailed information and analysis of these datasets is a useful resource in guiding insightful selection of datasets for future research. In addition, the issues with current algorithm evaluation vis-\'{a}-vis limitations of the available datasets and evaluation protocols are also highlighted; resulting in a number of recommendations for collection of new datasets and use of evaluation protocols
    corecore