166 research outputs found

    A lattice formulation of the F4 completion procedure

    Get PDF
    We write a procedure for constructing noncommutative Groebner bases. Reductions are done by particular linear projectors, called reduction operators. The operators enable us to use a lattice construction to reduce simultaneously each S-polynomial into a unique normal form. We write an implementation as well as an example to illustrate our procedure. Moreover, the lattice construction is done by Gaussian elimination, which relates our procedure to the F4 algorithm for constructing commutative Groebner bases

    Syzygies among reduction operators

    Get PDF
    We introduce the notion of syzygy for a set of reduction operators and relate it to the notion of syzygy for presentations of algebras. We give a method for constructing a linear basis of the space of syzygies for a set of reduction operators. We interpret these syzygies in terms of the confluence property from rewriting theory. This enables us to optimise the completion procedure for reduction operators based on a criterion for detecting useless reductions. We illustrate this criterion with an example of construction of commutative Gr{\"o}bner basis

    Signature Gr\"obner bases in free algebras over rings

    Full text link
    We generalize signature Gr\"obner bases, previously studied in the free algebra over a field or polynomial rings over a ring, to ideals in the mixed algebra R[x1,...,xk]y1,,ynR[x_1,...,x_k]\langle y_1,\dots,y_n \rangle where RR is a principal ideal domain. We give an algorithm for computing them, combining elements from the theory of commutative and noncommutative (signature) Gr\"obner bases, and prove its correctness. Applications include extensions of the free algebra with commutative variables, e.g., for homogenization purposes or for performing ideal theoretic operations such as intersections, and computations over Z\mathbb{Z} as universal proofs over fields of arbitrary characteristic. By extending the signature cover criterion to our setting, our algorithm also lifts some technical restrictions from previous noncommutative signature-based algorithms, now allowing, e.g., elimination orderings. We provide a prototype implementation for the case when RR is a field, and show that our algorithm for the mixed algebra is more efficient than classical approaches using existing algorithms.Comment: 10 page

    PBW deformations of a Fomin-Kirillov algebra and other examples

    Full text link
    We begin the study of PBW deformations of graded algebras relevant to the theory of Hopf algebras. One of our examples is the Fomin-Kirillov algebra FK3. Another one appeared in a paper of Garc\'ia Iglesias and Vay. As a consequence of our methods, we determine when the deformations are semisimple and we are able to produce PBW bases and polynomial identities for these deformations.Comment: 22 pages. Accepted for publication in Algebr. Represent. Theor
    corecore