310 research outputs found

    Analysis of Nonlinear Systems via Bernstein Expansions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106482/1/AIAA2013-4557.pd

    Precision analysis for hardware acceleration of numerical algorithms

    No full text
    The precision used in an algorithm affects the error and performance of individual computations, the memory usage, and the potential parallelism for a fixed hardware budget. However, when migrating an algorithm onto hardware, the potential improvements that can be obtained by tuning the precision throughout an algorithm to meet a range or error specification are often overlooked; the major reason is that it is hard to choose a number system which can guarantee any such specification can be met. Instead, the problem is mitigated by opting to use IEEE standard double precision arithmetic so as to be ‘no worse’ than a software implementation. However, the flexibility in the number representation is one of the key factors that can be exploited on reconfigurable hardware such as FPGAs, and hence ignoring this potential significantly limits the performance achievable. In order to optimise the performance of hardware reliably, we require a method that can tractably calculate tight bounds for the error or range of any variable within an algorithm, but currently only a handful of methods to calculate such bounds exist, and these either sacrifice tightness or tractability, whilst simulation-based methods cannot guarantee the given error estimate. This thesis presents a new method to calculate these bounds, taking into account both input ranges and finite precision effects, which we show to be, in general, tighter in comparison to existing methods; this in turn can be used to tune the hardware to the algorithm specifications. We demonstrate the use of this software to optimise hardware for various algorithms to accelerate the solution of a system of linear equations, which forms the basis of many problems in engineering and science, and show that significant performance gains can be obtained by using this new approach in conjunction with more traditional hardware optimisations

    Localization theorems for nonlinear eigenvalue problems

    Full text link
    Let T : \Omega \rightarrow \bbC^{n \times n} be a matrix-valued function that is analytic on some simply-connected domain \Omega \subset \bbC. A point λ∈Ω\lambda \in \Omega is an eigenvalue if the matrix T(λ)T(\lambda) is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer-Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation.Comment: Submitted to SIMAX. 22 pages, 11 figure

    Multiplicity Estimates: a Morse-theoretic approach

    Full text link
    The problem of estimating the multiplicity of the zero of a polynomial when restricted to the trajectory of a non-singular polynomial vector field, at one or several points, has been considered by authors in several different fields. The two best (incomparable) estimates are due to Gabrielov and Nesterenko. In this paper we present a refinement of Gabrielov's method which simultaneously improves these two estimates. Moreover, we give a geometric description of the multiplicity function in terms certain naturally associated polar varieties, giving a topological explanation for an asymptotic phenomenon that was previously obtained by elimination theoretic methods in the works of Brownawell, Masser and Nesterenko. We also give estimates in terms of Newton polytopes, strongly generalizing the classical estimates.Comment: Minor revision; To appear in Duke Math. Journa

    Rational Krylov for Stieltjes matrix functions: convergence and pole selection

    Full text link
    Evaluating the action of a matrix function on a vector, that is x=f(M)vx=f(\mathcal M)v, is an ubiquitous task in applications. When M\mathcal M is large, one usually relies on Krylov projection methods. In this paper, we provide effective choices for the poles of the rational Krylov method for approximating xx when f(z)f(z) is either Cauchy-Stieltjes or Laplace-Stieltjes (or, which is equivalent, completely monotonic) and M\mathcal M is a positive definite matrix. Relying on the same tools used to analyze the generic situation, we then focus on the case M=I⊗A−BT⊗I\mathcal M=I \otimes A - B^T \otimes I, and vv obtained vectorizing a low-rank matrix; this finds application, for instance, in solving fractional diffusion equation on two-dimensional tensor grids. We see how to leverage tensorized Krylov subspaces to exploit the Kronecker structure and we introduce an error analysis for the numerical approximation of xx. Pole selection strategies with explicit convergence bounds are given also in this case

    Computing hypergeometric functions rigorously

    Get PDF
    We present an efficient implementation of hypergeometric functions in arbitrary-precision interval arithmetic. The functions 0F1{}_0F_1, 1F1{}_1F_1, 2F1{}_2F_1 and 2F0{}_2F_0 (or the Kummer UU-function) are supported for unrestricted complex parameters and argument, and by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, Airy functions, Legendre functions, Jacobi polynomials, complete elliptic integrals, and other special functions. The output can be used directly for interval computations or to generate provably correct floating-point approximations in any format. Performance is competitive with earlier arbitrary-precision software, and sometimes orders of magnitude faster. We also partially cover the generalized hypergeometric function pFq{}_pF_q and computation of high-order parameter derivatives.Comment: v2: corrected example in section 3.1; corrected timing data for case E-G in section 8.5 (table 6, figure 2); adjusted paper siz
    • …
    corecore