2,685 research outputs found

    A high-level 3D visualization API for Java and ImageJ

    Get PDF
    BACKGROUND: Current imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set. RESULTS: Here we present a platform-independent framework based on Java and Java 3D for accelerated rendering of biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface extraction, and image annotation. The ability to rely on a library that removes the low-level details enables concentrating software development efforts on the algorithm implementation parts. CONCLUSIONS: Our framework enables biomedical image software development to be built with 3D visualization capabilities with very little effort. We offer the source code and convenient binary packages along with extensive documentation at http://3dviewer.neurofly.de

    Guided Proofreading of Automatic Segmentations for Connectomics

    Full text link
    Automatic cell image segmentation methods in connectomics produce merge and split errors, which require correction through proofreading. Previous research has identified the visual search for these errors as the bottleneck in interactive proofreading. To aid error correction, we develop two classifiers that automatically recommend candidate merges and splits to the user. These classifiers use a convolutional neural network (CNN) that has been trained with errors in automatic segmentations against expert-labeled ground truth. Our classifiers detect potentially-erroneous regions by considering a large context region around a segmentation boundary. Corrections can then be performed by a user with yes/no decisions, which reduces variation of information 7.5x faster than previous proofreading methods. We also present a fully-automatic mode that uses a probability threshold to make merge/split decisions. Extensive experiments using the automatic approach and comparing performance of novice and expert users demonstrate that our method performs favorably against state-of-the-art proofreading methods on different connectomics datasets.Comment: Supplemental material available at http://rhoana.org/guidedproofreading/supplemental.pd

    Modeling Brain Circuitry over a Wide Range of Scales

    Get PDF
    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation

    Machine learning of hierarchical clustering to segment 2D and 3D images

    Get PDF
    We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images.Comment: 15 pages, 8 figure

    Doctor of Philosophy

    Get PDF
    dissertationNeuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. However, the extremely anisotropic resolution of the data makes segmentation and tracking across slices difficult. Furthermore, the thickness of the slices can make the membranes of the neurons hard to identify. Similarly, structures can change significantly from one section to the next due to slice thickness which makes tracking difficult. This thesis presents a complete method for segmenting many neurons at once in two-dimensional (2D) electron microscopy images and reconstructing and visualizing them in three-dimensions (3D). First, we present an advanced method for identifying neuron membranes in 2D, necessary for whole neuron segmentation, using a machine learning approach. The method described uses a series of artificial neural networks (ANNs) in a framework combined with a feature vector that is composed of image and context; intensities sampled over a stencil neighborhood. Several ANNs are applied in series allowing each ANN to use the classification context; provided by the previous network to improve detection accuracy. To improve the membrane detection, we use information from a nonlinear alignment of sequential learned membrane images in a final ANN that improves membrane detection in each section. The final output, the detected membranes, are used to obtain 2D segmentations of all the neurons in an image. We also present a method that constructs 3D neuron representations by formulating the problem of finding paths through sets of sections as an optimal path computation, which applies a cost function to the identification of a cell from one section to the next and solves this optimization problem using Dijkstras algorithm. This basic formulation accounts for variability or inconsistencies between sections and prioritizes cells based on the evidence of their connectivity. Finally, we present a tool that combines these techniques with a visual user interface that enables users to quickly segment whole neurons in large volumes

    Open source bioimage informatics for cell biology

    Get PDF
    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery

    A Hitchhiker's guide through the bio-image analysis software universe

    Get PDF
    Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget.Peer reviewe
    • …
    corecore