45,650 research outputs found

    An Intelligent Model for Stock Investment with Buffett Strategy, Classifier System, Neural Network and Linear Programming

    Get PDF
    “The Intelligent Model for Stock Investment with Buffett Strategy, Classifier System, Neural Network and Linear Programming” was studied for developing an intelligent model which can learn more knowledge regarding to stock investment with artificial intelligence technology. Classifier system, neural network, fundamental financial investment factors and linear programming are the fundamental components for the research. Knowledge transformation and genetic evolution capability was discussed in the article, too. Furthermore, the investment strategy developed by Warren E. Buffett[17], the great financial investment master, was the major knowledge which was practiced in the article. For realizing more detail about learning system, a lot of topics regarding to artificial intelligence were discussed in advanced, including “A Market-Based Rule Learning System” [1], “Dynamic Trading Strategy Learning Model using Learning Classifier System” [2], “Nonlinear Index Prediction” [3], “Financial Decision Support with Hybrid Genetic and Neural Based Modeling Tool” [4] and “Fuzzy Interval methods in Investment risk Appraisal” [5]. According to the study mentioned above, the ideas to give intelligent model, especially with genetic algorithm, bring the direction for the advanced financial investment strategy and operation. Therefore, it was why a novel intelligent model with Buffett strategy, classifier system, neural network and linear programming proposed in the article

    Instance Selection using Genetic Algorithms for an Intelligent Ensemble Trading System

    Get PDF
    Instance selection is a way to remove unnecessary data that can adversely affect the prediction model, thereby selecting representative and relevant data from the original data set that is expected to improve predictive performance. Instance selection plays an important role in improving the scalability of data mining algorithms and has also proven to be successful over a wide range of classification problems. However, instance selection using an evolutionary approach, as proposed in this study, is different from previous methods that have focused on improving accuracy performance in the stock market (i.e., Up or Down forecast). In fact, we propose a new approach to instance selection that uses genetic algorithms (GAs) to define a set of target labels that can identify the buying and selling signals and then select instances according to three performance measures of the trading system (i.e., the winning ratio, the payoff ratio, and the profit factor). An intelligent ensemble trading system with instance selection using GAs is then developed for investors in the stock market. An empirical study of the proposed model is conducted using 35 companies from the Dow Jones Industrial Average, the New York Stock Exchange, and the Nasdaq Stock Market from January, 2006 to December, 2016

    Financial Trading Model with Stock Bar Chart Image Time Series with Deep Convolutional Neural Networks

    Full text link
    Even though computational intelligence techniques have been extensively utilized in financial trading systems, almost all developed models use the time series data for price prediction or identifying buy-sell points. However, in this study we decided to use 2-D stock bar chart images directly without introducing any additional time series associated with the underlying stock. We propose a novel algorithmic trading model CNN-BI (Convolutional Neural Network with Bar Images) using a 2-D Convolutional Neural Network. We generated 2-D images of sliding windows of 30-day bar charts for Dow 30 stocks and trained a deep Convolutional Neural Network (CNN) model for our algorithmic trading model. We tested our model separately between 2007-2012 and 2012-2017 for representing different market conditions. The results indicate that the model was able to outperform Buy and Hold strategy, especially in trendless or bear markets. Since this is a preliminary study and probably one of the first attempts using such an unconventional approach, there is always potential for improvement. Overall, the results are promising and the model might be integrated as part of an ensemble trading model combined with different strategies.Comment: accepted to be published in Intelligent Automation and Soft Computing journa

    The evolution and dynamics of stocks on the Johannesburg Securities Exchange and their implications for equity investment management

    Get PDF
    [No subject] This thesis explores the dynamics of the Johannesburg Stock Exchange returns to understand how they impact stock prices. The introductory chapter renders a brief overview of financial markets in general and the Johannesburg Securities Exchange (JSE) in particular. The second chapter employs the fractal analysis technique, a method for estimating the Hurst exponent, to examine the JSE indices. The results suggest that the JSE is fractal in nature, implying a long-term predictability property. The results also indicate a logical system of variation of the Hurst exponent by firm size, market characteristics and sector grouping. The third chapter investigates the economic and political events that affect different market sectors and how they are implicated in the structural dynamics of the JSE. It provides some insights into the degree of sensitivity of different market sectors to positive and negative news. The findings demonstrate transient episodes of nonlinearity that can be attributed to economic events and the state of the market. Chapter 4 looks at the evolution of risk measurement and the distribution of returns on the JSE. There is evidence of fat tails and that the Student t-distribution is a better fit for the JSE returns than the Normal distribution. The Gaussian based Value-at-Risk model also proved to be an ineffective risk measurement tool under high market volatility. In Chapter 5 simulations are used to investigate how different agent interactions affect market dynamics. The results show that it is possible for traders to switch between trading strategies and this evolutionary switching of strategies is dependent on the state of the market. Chapter 6 shows the extent to which endogeneity affects price formation. To explore this relationship, the Poisson Hawkes model, which combines exogenous influences with self-excited dynamics, is employed. Evidence suggests that the level of endogeneity has been increasing rapidly over the past decade. This implies that there is an increasing influence of internal dynamics on price formation. The findings also demonstrate that market crashes are caused by endogenous dynamics and exogenous shocks merely act as catalysts. Chapter 7 presents the hybrid adaptive intelligent model for financial time series prediction. Given evidence of non-linearity, heterogeneous agents and the fractal nature of the JSE market, neural networks, fuzzy logic and fractal theory are combined, to obtain a hybrid adaptive intelligent model. The proposed system outperformed traditional models

    Finding kernel function for stock market prediction with support vector regression

    Get PDF
    Stock market prediction is one of the fascinating issues of stock market research. Accurate stock prediction becomes the biggest challenge in investment industry because the distribution of stock data is changing over the time. Time series forcasting, Neural Network (NN) and Support Vector Machine (SVM) are once commonly used for prediction on stock price. In this study, the data mining operation called time series forecasting is implemented. The large amount of stock data collected from Kuala Lumpur Stock Exchange is used for the experiment to test the validity of SVMs regression. SVM is a new machine learning technique with principle of structural minimization risk, which have greater generalization ability and proved success in time series prediction. Two kernel functions namely Radial Basis Function and polynomial are compared for finding the accurate prediction values. Besides that, backpropagation neural network are also used to compare the predictions performance. Several experiments are conducted and some analyses on the experimental results are done. The results show that SVM with polynomial kernels provide a promising alternative tool in KLSE stock market prediction

    Daily variation and predicting stock market returns for the frankfurter börse (stock market)

    Get PDF
    In this article we test the random walk hypothesis in the German daily stock prices by means of a unit root test and the development of an ARIMA model for prediction. The results show that the time series of daily stock returns for a stratified random sample of German firms listed on the stock exchange of Frankfurt exhibit unit roots. Also, we find that one may predict changes in the returns to these listed stocks. These time series exhibit properties which are forecast able and provide the intelligent data analysts’ methods to better predict the directive of individual stock returns for listed German firms. The results of this study, though different from most other studies of other stock markets, indicate the Frankfurt stock market behaves in similar ways to North American, other European and Asian markets previously studied in the same manner. First published online: 14 Oct 201

    Housing Market Crash Prediction Using Machine Learning and Historical Data

    Get PDF
    The 2008 housing crisis was caused by faulty banking policies and the use of credit derivatives of mortgages for investment purposes. In this project, we look into datasets that are the markers to a typical housing crisis. Using those data sets we build three machine learning techniques which are, Linear regression, Hidden Markov Model, and Long Short-Term Memory. After building the model we did a comparative study to show the prediction done by each model. The linear regression model did not predict a housing crisis, instead, it showed that house prices would be rising steadily and the R-squared score of the model is 0.76. The Hidden Markov Model predicted a fall in the house prices and the R-squared score for this model is 0.706. Lastly, the Long Short-Term Memory showed that the house price would fall briefly but would stabilize after that. Also, fall is not as sharp as what was predicted by the HMM model. The R- squared scored for this model is 0.9, which is the highest among all other models. Although the R-squared score doesn’t say how accurate a model it definitely says how closely a model fits the data. From our model R-square score the model that best fits the data was LSTM. As the dataset used in all the models are the same therefore it is safe to say the prediction made by LSTM is better than the other ones

    Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises

    Get PDF
    The major success of fuzzy logic in the field of remote control opened the door to its application in many other fields, including finance. However, there has not been an updated and comprehensive literature review on the uses of fuzzy logic in the financial field. For that reason, this study attempts to critically examine fuzzy logic as an effective, useful method to be applied to financial research and, particularly, to the management of banking crises. The data sources were Web of Science and Scopus, followed by an assessment of the records according to pre-established criteria and an arrangement of the information in two main axes: financial markets and corporate finance. A major finding of this analysis is that fuzzy logic has not yet been used to address banking crises or as an alternative to ensure the resolvability of banks while minimizing the impact on the real economy. Therefore, we consider this article relevant for supervisory and regulatory bodies, as well as for banks and academic researchers, since it opens the door to several new research axes on banking crisis analyses using artificial intelligence techniques
    • …
    corecore