1,913 research outputs found
VLIT NODE Sensor Technology and Prefarm
Precision farming systems are based on a detailed monitoring of information and data that are necessary for successful decision-making in crop production. The system is designed for data collection from several resources. In past years an extensive research and development work has been done in the field of wireless sensor networks (WSN) in the world. When a wireless sensor network (WSN) is used for agricultural purposes, it has to provide first of all a long-reach signal. The present paper describes new long distance RFID based technology implementation - VLIT NODE.Wireless Sensor Network, Precision Agriculture, RFID., Research and Development/Tech Change/Emerging Technologies, Research Methods/ Statistical Methods, GA, IN,
Trimetric Imaging of the Martian Ionosphere Using a CubeSat Constellation
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143020/1/6.2017-5252.pd
C-Band Airport Surface Communications System Standards Development, Phase I
This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." The proposed future C-band (5091- to 5150-MHz) airport surface communication system, referred to as the Aeronautical Mobile Airport Communications System (AeroMACS), is anticipated to increase overall air-to-ground data communications systems capacity by using a new spectrum (i.e., not very high frequency (VHF)). Although some critical services could be supported, AeroMACS will also target noncritical services, such as weather advisory and aeronautical information services as part of an airborne System Wide Information Management (SWIM) program. AeroMACS is to be designed and implemented in a manner that will not disrupt other services operating in the C-band. This report defines the AeroMACS concepts of use, high-level system requirements, and architecture; the performance of supporting system analyses; the development of AeroMACS test and demonstration plans; and the establishment of an operational AeroMACS capability in support of C-band aeronautical data communications standards to be advanced in both international (International Civil Aviation Organization, ICAO) and national (RTCA) forums. This includes the development of system parameter profile recommendations for AeroMACS based on existing Institute of Electrical and Electronics Engineering (IEEE) 802.16e- 2009 standard
Communication satellites: Guidelines for a strategic plan
To maintain and augment the leadership that the United States has enjoyed and to ensure that the nation is investing sufficiently and wisely to this purpose, a strategic plan for satellite communications research and development was prepared by NASA. Guidelines and recommendations for a NASA plan to support this objective and for the conduct of communication satellite research and development program over the next 25 years were generated. The guidelines are briefly summarized
Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays
Massive MIMO (multiple-input multiple-output) is no longer a "wild" or
"promising" concept for future cellular networks - in 2018 it became a reality.
Base stations (BSs) with 64 fully digital transceiver chains were commercially
deployed in several countries, the key ingredients of Massive MIMO have made it
into the 5G standard, the signal processing methods required to achieve
unprecedented spectral efficiency have been developed, and the limitation due
to pilot contamination has been resolved. Even the development of fully digital
Massive MIMO arrays for mmWave frequencies - once viewed prohibitively
complicated and costly - is well underway. In a few years, Massive MIMO with
fully digital transceivers will be a mainstream feature at both sub-6 GHz and
mmWave frequencies. In this paper, we explain how the first chapter of the
Massive MIMO research saga has come to an end, while the story has just begun.
The coming wide-scale deployment of BSs with massive antenna arrays opens the
door to a brand new world where spatial processing capabilities are
omnipresent. In addition to mobile broadband services, the antennas can be used
for other communication applications, such as low-power machine-type or
ultra-reliable communications, as well as non-communication applications such
as radar, sensing and positioning. We outline five new Massive MIMO related
research directions: Extremely large aperture arrays, Holographic Massive MIMO,
Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive
MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin
Solar-Terrestrial Science Strategy Workshop
The conclusions and recommendations reached at the Solar Terrestrial Science Strategy Workshop are summarized. The charter given to this diverse group was: (1) to establish the level of scientific understanding to be accomplished with the completion of the current and near term worldwide programs; (2) identify the significant scientific questions to be answered by future solar terrestrial programs, and the programs required to answer these questions; and (3) map out a program strategy, taking into consideration currently perceived space capabilities and constraints, to accomplish the identified program
Universal Intelligent Small Cell (UnISCell) for Next Generation Cellular Networks
Exploring innovative cellular architectures to achieve enhanced system capacity and good coverage has become a critical issue towards realizing the next generation of wireless communications. In this context, this paper proposes a novel concept of Universal Intelligent Small Cell (UnISCell) for enabling the densification of the next generation of cellular networks. The proposed novel concept envisions an integrated platform of providing a strong linkage between different stakeholders such as
street lighting networks, landline telephone networks and future wireless networks, and is universal in nature being independent of the operating frequency bands and traffic types. The main motivating factors for the proposed small cell concept are the need of public infrastructure re-engineering, and the recent advances in several enabling technologies. First, we highlight the main concepts of the proposed UnISCell platform. Subsequently, we present two deployment scenarios for the proposed UnISCell concept considering infrastructure sharing and service sharing as important aspects. We then describe the key future
technologies for enabling the proposed UnISCell concept and present a use case example with the help of numerical results. Finally, we conclude this article by providing some interesting future recommendations
- …
