227 research outputs found

    Unextendible mutually unbiased bases (after Mandayam, Bandyopadhyay, Grassl and Wootters)

    Get PDF
    We consider questions posed in a recent paper of Mandayam et al. (2014) on the nature of unextendible mutually unbiased bases. We describe a conceptual framework to study these questions, using a connection proved by the author in Thas (2009) between the set of nonidentity generalized Pauli operators on the Hilbert space of N d-level quantum systems, d a prime, and the geometry of non-degenerate alternating bilinear forms of rank N over finite fields F d We then supply alternative and short proofs of results obtained in Mandayam et al. (2014), as well as new general bounds for the problems considered in loc. cit. In this setting, we also solve Conjecture 1 of Mandayam et al. (2014) and speculate on variations of this conjecture

    Load-Balanced Fractional Repetition Codes

    Full text link
    We introduce load-balanced fractional repetition (LBFR) codes, which are a strengthening of fractional repetition (FR) codes. LBFR codes have the additional property that multiple node failures can be sequentially repaired by downloading no more than one block from any other node. This allows for better use of the network, and can additionally reduce the number of disk reads necessary to repair multiple nodes. We characterize LBFR codes in terms of their adjacency graphs, and use this characterization to present explicit constructions LBFR codes with storage capacity comparable existing FR codes. Surprisingly, in some parameter regimes, our constructions of LBFR codes match the parameters of the best constructions of FR codes

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 101510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure

    Simple maps, Hurwitz numbers, and Topological Recursion

    Full text link
    We introduce the notion of fully simple maps, which are maps with non self-intersecting disjoint boundaries. In contrast, maps where such a restriction is not imposed are called ordinary. We study in detail the combinatorics of fully simple maps with topology of a disk or a cylinder. We show that the generating series of simple disks is given by the functional inversion of the generating series of ordinary disks. We also obtain an elegant formula for cylinders. These relations reproduce the relation between moments and free cumulants established by Collins et al. math.OA/0606431, and implement the symplectic transformation xyx \leftrightarrow y on the spectral curve in the context of topological recursion. We conjecture that the generating series of fully simple maps are computed by the topological recursion after exchange of xx and yy. We propose an argument to prove this statement conditionally to a mild version of symplectic invariance for the 11-hermitian matrix model, which is believed to be true but has not been proved yet. Our argument relies on an (unconditional) matrix model interpretation of fully simple maps, via the formal hermitian matrix model with external field. We also deduce a universal relation between generating series of fully simple maps and of ordinary maps, which involves double monotone Hurwitz numbers. In particular, (ordinary) maps without internal faces -- which are generated by the Gaussian Unitary Ensemble -- and with boundary perimeters (λ1,,λn)(\lambda_1,\ldots,\lambda_n) are strictly monotone double Hurwitz numbers with ramifications λ\lambda above \infty and (2,,2)(2,\ldots,2) above 00. Combining with a recent result of Dubrovin et al. math-ph/1612.02333, this implies an ELSV-like formula for these Hurwitz numbers.Comment: 66 pages, 7 figure

    Homological mirror symmetry for toric orbifolds of toric del Pezzo surfaces

    Full text link
    We formulate a conjecture which describes the Fukaya category of an exact Lefschetz fibration defined by a Laurent polynomial in two variables in terms of a pair consisting of a consistent dimer model and a perfect matching on it. We prove this conjecture in some cases, and obtain homological mirror symmetry for quotient stacks of toric del Pezzo surfaces by finite subgroups of the torus as a corollary.Comment: 23 pages, 40 figures; v2:completely rewritten; v3:Incorporated suggestions by the refere

    Teichm\"uller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables

    Full text link
    We generalize a new class of cluster type mutations for which exchange transformations are given by reciprocal polynomials. In the case of second-order polynomials of the form x+2cosπ/no+x1x+2\cos{\pi/n_o}+x^{-1} these transformations are related to triangulations of Riemann surfaces of arbitrary genus with at least one hole/puncture and with an arbitrary number of orbifold points of arbitrary integer orders non_o. We propose the dual graph description of the corresponding Teichm\"uller spaces, construct the Poisson algebra of the Teichm\"uller space coordinates, propose the combinatorial description of the corresponding geodesic functions and find the mapping class group transformations.Comment: 20 pages, notations and many essential typos corrected, most significantly, formulae 2.3, 2.5, proof of Lemmata 2.6 and 4.5. Journal reference is added (published version contains typos

    Uniformity in association schemes and coherent configurations: cometric Q-antipodal schemes and linked systems

    Get PDF
    Inspired by some intriguing examples, we study uniform association schemes and uniform coherent configurations, including cometric Q-antipodal association schemes. After a review of imprimitivity, we show that an imprimitive association scheme is uniform if and only if it is dismantlable, and we cast these schemes in the broader context of certain --- uniform --- coherent configurations. We also give a third characterization of uniform schemes in terms of the Krein parameters, and derive information on the primitive idempotents of such a scheme. In the second half of the paper, we apply these results to cometric association schemes. We show that each such scheme is uniform if and only if it is Q-antipodal, and derive results on the parameters of the subschemes and dismantled schemes of cometric Q-antipodal schemes. We revisit the correspondence between uniform indecomposable three-class schemes and linked systems of symmetric designs, and show that these are cometric Q-antipodal. We obtain a characterization of cometric Q-antipodal four-class schemes in terms of only a few parameters, and show that any strongly regular graph with a ("non-exceptional") strongly regular decomposition gives rise to such a scheme. Hemisystems in generalized quadrangles provide interesting examples of such decompositions. We finish with a short discussion of five-class schemes as well as a list of all feasible parameter sets for cometric Q-antipodal four-class schemes with at most six fibres and fibre size at most 2000, and describe the known examples. Most of these examples are related to groups, codes, and geometries.Comment: 42 pages, 1 figure, 1 table. Published version, minor revisions, April 201

    On semi-finite hexagons of order (2,t)(2, t) containing a subhexagon

    Get PDF
    The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi-finite thick generalized polygons. We show here that no semi-finite generalized hexagon of order (2,t)(2,t) can have a subhexagon HH of order 22. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2)H(2) or its point-line dual HD(2)H^D(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon S\mathcal{S} of order (2,t)(2,t) which contains a generalized hexagon HH of order 22 as an isometrically embedded subgeometry must be finite. Moreover, if HHD(2)H \cong H^D(2) then S\mathcal{S} must also be a generalized hexagon, and consequently isomorphic to either HD(2)H^D(2) or the dual twisted triality hexagon T(2,8)T(2,8).Comment: 21 pages; new corrected proofs of Lemmas 4.6 and 4.7; earlier proofs worked for generalized hexagons but not near hexagon
    corecore