372 research outputs found

    Cyclic LRC Codes and their Subfield Subcodes

    Full text link
    We consider linear cyclic codes with the locality property, or locally recoverable codes (LRC codes). A family of LRC codes that generalizes the classical construction of Reed-Solomon codes was constructed in a recent paper by I. Tamo and A. Barg (IEEE Transactions on Information Theory, no. 8, 2014; arXiv:1311.3284). In this paper we focus on the optimal cyclic codes that arise from the general construction. We give a characterization of these codes in terms of their zeros, and observe that there are many equivalent ways of constructing optimal cyclic LRC codes over a given field. We also study subfield subcodes of cyclic LRC codes (BCH-like LRC codes) and establish several results about their locality and minimum distance.Comment: Submitted for publicatio

    Cyclic LRC Codes, binary LRC codes, and upper bounds on the distance of cyclic codes

    Full text link
    We consider linear cyclic codes with the locality property, or locally recoverable codes (LRC codes). A family of LRC codes that generalize the classical construction of Reed-Solomon codes was constructed in a recent paper by I. Tamo and A. Barg (IEEE Trans. Inform. Theory, no. 8, 2014). In this paper we focus on optimal cyclic codes that arise from this construction. We give a characterization of these codes in terms of their zeros, and observe that there are many equivalent ways of constructing optimal cyclic LRC codes over a given field. We also study subfield subcodes of cyclic LRC codes (BCH-like LRC codes) and establish several results about their locality and minimum distance. The locality parameter of a cyclic code is related to the dual distance of this code, and we phrase our results in terms of upper bounds on the dual distance.Comment: 12pp., submitted for publication. An extended abstract of this submission was posted earlier as arXiv:1502.01414 and was published in Proceedings of the 2015 IEEE International Symposium on Information Theory, Hong Kong, China, June 14-19, 2015, pp. 1262--126

    On the Combinatorics of Locally Repairable Codes via Matroid Theory

    Full text link
    This paper provides a link between matroid theory and locally repairable codes (LRCs) that are either linear or more generally almost affine. Using this link, new results on both LRCs and matroid theory are derived. The parameters (n,k,d,r,δ)(n,k,d,r,\delta) of LRCs are generalized to matroids, and the matroid analogue of the generalized Singleton bound in [P. Gopalan et al., "On the locality of codeword symbols," IEEE Trans. Inf. Theory] for linear LRCs is given for matroids. It is shown that the given bound is not tight for certain classes of parameters, implying a nonexistence result for the corresponding locally repairable almost affine codes, that are coined perfect in this paper. Constructions of classes of matroids with a large span of the parameters (n,k,d,r,δ)(n,k,d,r,\delta) and the corresponding local repair sets are given. Using these matroid constructions, new LRCs are constructed with prescribed parameters. The existence results on linear LRCs and the nonexistence results on almost affine LRCs given in this paper strengthen the nonexistence and existence results on perfect linear LRCs given in [W. Song et al., "Optimal locally repairable codes," IEEE J. Sel. Areas Comm.].Comment: 48 pages. Submitted for publication. In this version: The text has been edited to improve the readability. Parameter d for matroids is now defined by the use of the rank function instead of the dual matroid. Typos are corrected. Section III is divided into two parts, and some numberings of theorems etc. have been change
    • …
    corecore