357 research outputs found

    Connections Between Mirror Descent, Thompson Sampling and the Information Ratio

    Get PDF
    The information-theoretic analysis by Russo and Van Roy (2014) in combination with minimax duality has proved a powerful tool for the analysis of online learning algorithms in full and partial information settings. In most applications there is a tantalising similarity to the classical analysis based on mirror descent. We make a formal connection, showing that the information-theoretic bounds in most applications can be derived from existing techniques for online convex optimisation. Besides this, for kk-armed adversarial bandits we provide an efficient algorithm with regret that matches the best information-theoretic upper bound and improve best known regret guarantees for online linear optimisation on p\ell_p-balls and bandits with graph feedback

    Minimax Policies for Combinatorial Prediction Games

    Full text link
    We address the online linear optimization problem when the actions of the forecaster are represented by binary vectors. Our goal is to understand the magnitude of the minimax regret for the worst possible set of actions. We study the problem under three different assumptions for the feedback: full information, and the partial information models of the so-called "semi-bandit", and "bandit" problems. We consider both LL_\infty-, and L2L_2-type of restrictions for the losses assigned by the adversary. We formulate a general strategy using Bregman projections on top of a potential-based gradient descent, which generalizes the ones studied in the series of papers Gyorgy et al. (2007), Dani et al. (2008), Abernethy et al. (2008), Cesa-Bianchi and Lugosi (2009), Helmbold and Warmuth (2009), Koolen et al. (2010), Uchiya et al. (2010), Kale et al. (2010) and Audibert and Bubeck (2010). We provide simple proofs that recover most of the previous results. We propose new upper bounds for the semi-bandit game. Moreover we derive lower bounds for all three feedback assumptions. With the only exception of the bandit game, the upper and lower bounds are tight, up to a constant factor. Finally, we answer a question asked by Koolen et al. (2010) by showing that the exponentially weighted average forecaster is suboptimal against LL_{\infty} adversaries
    corecore