106 research outputs found

    Recursive Sketching For Frequency Moments

    Full text link
    In a ground-breaking paper, Indyk and Woodruff (STOC 05) showed how to compute FkF_k (for k>2k>2) in space complexity O(\mbox{\em poly-log}(n,m)\cdot n^{1-\frac2k}), which is optimal up to (large) poly-logarithmic factors in nn and mm, where mm is the length of the stream and nn is the upper bound on the number of distinct elements in a stream. The best known lower bound for large moments is Ω(log(n)n12k)\Omega(\log(n)n^{1-\frac2k}). A follow-up work of Bhuvanagiri, Ganguly, Kesh and Saha (SODA 2006) reduced the poly-logarithmic factors of Indyk and Woodruff to O(log2(m)(logn+logm)n12k)O(\log^2(m)\cdot (\log n+ \log m)\cdot n^{1-{2\over k}}). Further reduction of poly-log factors has been an elusive goal since 2006, when Indyk and Woodruff method seemed to hit a natural "barrier." Using our simple recursive sketch, we provide a different yet simple approach to obtain a O(log(m)log(nm)(loglogn)4n12k)O(\log(m)\log(nm)\cdot (\log\log n)^4\cdot n^{1-{2\over k}}) algorithm for constant ϵ\epsilon (our bound is, in fact, somewhat stronger, where the (loglogn)(\log\log n) term can be replaced by any constant number of log\log iterations instead of just two or three, thus approaching lognlog^*n. Our bound also works for non-constant ϵ\epsilon (for details see the body of the paper). Further, our algorithm requires only 44-wise independence, in contrast to existing methods that use pseudo-random generators for computing large frequency moments

    Communication Lower Bounds for Statistical Estimation Problems via a Distributed Data Processing Inequality

    Full text link
    We study the tradeoff between the statistical error and communication cost of distributed statistical estimation problems in high dimensions. In the distributed sparse Gaussian mean estimation problem, each of the mm machines receives nn data points from a dd-dimensional Gaussian distribution with unknown mean θ\theta which is promised to be kk-sparse. The machines communicate by message passing and aim to estimate the mean θ\theta. We provide a tight (up to logarithmic factors) tradeoff between the estimation error and the number of bits communicated between the machines. This directly leads to a lower bound for the distributed \textit{sparse linear regression} problem: to achieve the statistical minimax error, the total communication is at least Ω(min{n,d}m)\Omega(\min\{n,d\}m), where nn is the number of observations that each machine receives and dd is the ambient dimension. These lower results improve upon [Sha14,SD'14] by allowing multi-round iterative communication model. We also give the first optimal simultaneous protocol in the dense case for mean estimation. As our main technique, we prove a \textit{distributed data processing inequality}, as a generalization of usual data processing inequalities, which might be of independent interest and useful for other problems.Comment: To appear at STOC 2016. Fixed typos in theorem 4.5 and incorporated reviewers' suggestion
    corecore