3,220 research outputs found

    Tensor-based trapdoors for CVP and their application to public key cryptography

    Get PDF
    We propose two trapdoors for the Closest-Vector-Problem in lattices (CVP) related to the lattice tensor product. Using these trapdoors we set up a lattice-based cryptosystem which resembles to the McEliece scheme

    Advantages of Unfair Quantum Ground-State Sampling

    Get PDF
    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field by Kadowaki and Nishimori close to two decades ago. Recent technological breakthroughs in the field, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. Here, we examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating ideal stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a commercially available quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than classical thermal samplers. We demonstrate that i) quantum annealers in general sample the ground-state manifolds of spin glasses very differently than thermal optimizers, ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution over ground-states, and iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.Comment: 13 pages, 11 figure

    On the Design of Cryptographic Primitives

    Full text link
    The main objective of this work is twofold. On the one hand, it gives a brief overview of the area of two-party cryptographic protocols. On the other hand, it proposes new schemes and guidelines for improving the practice of robust protocol design. In order to achieve such a double goal, a tour through the descriptions of the two main cryptographic primitives is carried out. Within this survey, some of the most representative algorithms based on the Theory of Finite Fields are provided and new general schemes and specific algorithms based on Graph Theory are proposed

    Tight bounds on the distinguishability of quantum states under separable measurements

    Full text link
    One of the many interesting features of quantum nonlocality is that the states of a multipartite quantum system cannot always be distinguished as well by local measurements as they can when all quantum measurements are allowed. In this work, we characterize the distinguishability of sets of multipartite quantum states when restricted to separable measurements -- those which contain the class of local measurements but nevertheless are free of entanglement between the component systems. We consider two quantities: The separable fidelity -- a truly quantum quantity -- which measures how well we can "clone" the input state, and the classical probability of success, which simply gives the optimal probability of identifying the state correctly. We obtain lower and upper bounds on the separable fidelity and give several examples in the bipartite and multipartite settings where these bounds are optimal. Moreover the optimal values in these cases can be attained by local measurements. We further show that for distinguishing orthogonal states under separable measurements, a strategy that maximizes the probability of success is also optimal for separable fidelity. We point out that the equality of fidelity and success probability does not depend on an using optimal strategy, only on the orthogonality of the states. To illustrate this, we present an example where two sets (one consisting of orthogonal states, and the other non-orthogonal states) are shown to have the same separable fidelity even though the success probabilities are different.Comment: 19 pages; published versio
    • ā€¦
    corecore