2 research outputs found

    Size and shape specific particles toward biomedical imaging: design, fabrication, and characterization

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe power of a biomedical imaging modality can be augmented and is, in large part, determined by the capabilities of the available contrast agents. For example, quantum dots represent a colorful palette of powerful contrast agents for optical fluorescence imaging and Raman spectroscopy, given their tunable multiplexing capability and long-term stability compared to traditional organic molecule-based fluorescent labels. On the contrary, as the workhorses in both clinical and research imaging, the full potentials of magnetic resonance imaging and computed tomography have yet to be actualized due to several existing fundamental limitations in the currently available contrast agents, including but not limited to, the lack of multiplexing capability, low sensitivity, as well as the lack of functional imaging capacity. Leveraging both traditional top-down micro- and nanoelectromechanical systems fabrication techniques and bottom-up self-assembly approaches, this dissertation explores the possibility of mitigating these limitations by engineering precisely controllable, size and shape (as well as a host of other materials properties) specific micro- and nanoparticles, for use as the next generation contrast agents for magnetic resonance imaging and computed tomography. Herein, the ways by which engineering approaches can impact the design, fabrication and characterization of contrast agents is investigated. Specifically, different configmations of magnetic micro- and nanoparticles, including double-disk and hollow-cylinder structmes, fabricated using a top-down approach were employed as magnetic resonance imaging contrast agents enabled with a multiplexing capability and improved sensitivity. Subsequently, a scalable nanomanufactming platform, utilizing nanoporous anodized aluminum oxide membranes as templates for pattern transfer as well as thermal/ultraviolet nanoimprinting techniques, was developed for the high throughput fabrication of size and shape specific polymeric nanorods. When ladened with X-ray attenuating tantalum oxide nanoparticle payloads, these polymeric nanorods can be used as contrast agents for computed tomography, yielding prolonged vascular circulation times, improved sensitivity, as well as targeted imaging capabilities. Furthermore, by applying various payload materials, this nanomanufacturing platform also has the flexibility to produce contrast agents for other imaging modalities, as well as the potential to realize dual-purpose agents for both diagnostic and therapeutic applications

    Modeling and Optimization of Micro-EDM Operation for Fabrication of Micro Holes

    Get PDF
    Based on the experimental results, an analysis was made to identify the performance of various electrodes during fabrication of micro holes considering Inconel 718 as well as titanium as workpiece materials. It was found that that platinum followed by graphite and copper as electrode material exhibited higher MRR for both the workpiece materials but on the other hand platinum showed higher values of OC, RCL and TA respectively when compared to graphite and copper. The variation of temperature distribution in radial and depth direction with different process parameters has been determined for Inconel 718 and Titanium 5. Theoretical cavity volume was calculated for different process parameter settings for both workpiece materials and it was found that Titanium 5 exhibited higher cavity volume then Inconel 718. This research work offers new insights into the performance of micro-µ-EDM of Inconel 718 and Titanium5 using different electrodes. The optimum process parameters have been identified to determine multi-objective machinability criteria such as MRR, angle of taper of micro-hole, the thickness of recast-layer and overcut for fabrication of micro-holes
    corecore