2 research outputs found

    Transparent Spectrum Co-Access in Cognitive Radio Networks

    Get PDF
    The licensed wireless spectrum is currently under-utilized by as much as 85%. Cognitive radio networks have been proposed to employ dynamic spectrum access to share this under-utilized spectrum between licensed primary user transmissions and unlicensed secondary user transmissions. Current secondary user opportunistic spectrum access methods, however, remain limited in their ability to provide enough incentive to convince primary users to share the licensed spectrum, and they rely on primary user absence to guarantee secondary user performance. These challenges are addressed by developing a Dynamic Spectrum Co-Access Architecture (DSCA) that allows secondary user transmissions to co-access transparently and concurrently with primary user transmissions. This work exploits dirty paper coding to precode the cognitive radio channel utilizing the redundant information found in primary user relay networks. Subsequently, the secondary user is able to provide incentive to the primary user through increased SINR to encourage licensed spectrum sharing. Then a region of co-accessis formulated within which any secondary user can co-access the licensed channel transparently to the primary user. In addition, a Spectrum Co-Access Protocol (SCAP) is developed to provide secondary users with guaranteed channel capacity and while minimizing channel access times. The numerical results show that the SCAP protocol build on the DSCA architecture is able to reduce secondary user channel access times compared with opportunistic spectrum access and increased secondary user network throughput. Finally, we present a novel method for increasing the secondary user channel capacity through sequential dirty paper coding. By exploiting similar redundancy in secondary user multi-hop networks as in primary user relay networks, the secondary user channel capacity can be increased. As a result of our work in overlay spectrum sharing through secondary user channel precoding, we provide a compelling argument that the current trend towards opportunistic spectrum sharing needs to be reconsidered. This work asserts that limitations of opportunistic spectrum access to transparently provide primary users incentive and its detrimental effect on secondary user performance due to primary user activity are enough to motivate further study into utilizing channel precoding schemes. The success of cognitive radios and its adoption into federal regulator policy will rely on providing just this type of incentive

    Cognitive satellite communications and representation learning for streaming and complex graphs.

    Get PDF
    This dissertation includes two topics. The first topic studies a promising dynamic spectrum access algorithm (DSA) that improves the throughput of satellite communication (SATCOM) under the uncertainty. The other topic investigates distributed representation learning for streaming and complex networks. DSA allows a secondary user to access the spectrum that are not occupied by primary users. However, uncertainty in SATCOM causes more spectrum sensing errors. In this dissertation, the uncertainty has been addressed by formulating a DSA decision-making process as a Partially Observable Markov Decision Process (POMDP) model to optimally determine which channels to sense and access. Large-scale networks have attracted many attentions to discover the hidden information from big data. Particularly, representation learning embeds the network into a lower vector space while maximally preserving the similarity among nodes. I propose a real-time distributed graph embedding algorithm (RTDGE) which is capable of distributively embedding the streaming graph by combining a novel edge partition approach and an incremental negative sample approach. Furthermore, a platform is prototyped based on Kafka and Storm. Real-time Twitter network data can be retrieved, partitioned and processed for state-of-art tasks. For knowledge graphs, existing works cannot capture the complex connection patterns and never consider the impacts from complicated relations, due to the unquantifiable relationships. A novel embedding algorithm is proposed to hierarchically measure the structural similarity and the impacts from relations by constructing a multi-layer graph. Then, an advanced representation learning model is designed based on an entity\u27s context generated by random walks on the multi-layer content graph
    corecore