3,180 research outputs found

    PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories

    Full text link
    Abstract. Many new applications involving moving objects require the collec-tion and querying of trajectory data, so efficient indexing methods are needed to support complex spatio-temporal queries on such data. Current work in this domain has used MBRs to approximate trajectories, which fail to capture some basic properties of trajectories, including smoothness and lack of internal area. This mismatch leads to poor pruning when such indices are used. In this work, we revisit the issue of using parametric space indexing for historical trajectory data. We approximate a sequence of movement functions with single continuous polynomial. Since trajectories tend to be smooth, our approximations work well and yield much finer approximation quality than MBRs. We present the PA-tree, a parametric index that uses this new approximation method. Experiments show that PA-tree construction costs are orders of magnitude lower than that of com-peting methods. Further, for spatio-temporal range queries, MBR-based methods require 20%–60 % more I/O than PA-trees with clustered indicies, and 300%– 400 % more I/O than PA-trees with non-clustered indicies.

    Challenging Issues of Spatio-Temporal Data Mining

    Get PDF
    The spatio-temporal database (STDB) has received considerable attention during the past few years, due to the emergence of numerous applications (e.g., flight control systems, weather forecast, mobile computing, etc.) that demand efficient management of moving objects. These applications record objects' geographical locations (sometimes also shapes) at various timestamps and support queries that explore their historical and future (predictive) behaviors. The STDB significantly extends the traditional spatial database, which deals with only stationary data and hence is inapplicable to moving objects, whose dynamic behavior requires re-investigation of numerous topics including data modeling, indexes, and the related query algorithms. In many application areas, huge amounts of data are generated, explicitly or implicitly containing spatial or spatiotemporal information. However, the ability to analyze these data remains inadequate, and the need for adapted data mining tools becomes a major challenge. In this paper, we have presented the challenging issues of spatio-temporal data mining. Keywords: database, data mining, spatial, temporal, spatio-tempora

    Update-Efficient Main-Memory Indexing of Moving Objects

    Get PDF

    PPQ-Trajectory : spatio-temporal quantization for querying in large trajectory repositories

    Get PDF
    We present PPQ-trajectory, a spatio-temporal quantization based solution for querying large dynamic trajectory data. PPQ-trajectory includes a partition-wise predictive quantizer (PPQ) that generates an error-bounded codebook with autocorrelation and spatial proximity-based partitions. The codebook is indexed to run approximate and exact spatio-temporal queries over compressed trajectories. PPQ-trajectory includes a coordinate quadtree coding for the codebook with support for exact queries. An incremental temporal partition-based index is utilised to avoid full reconstruction of trajectories during queries. An extensive set of experimental results for spatio-temporal queries on real trajectory datasets is presented. PPQ-trajectory shows significant improvements over the alternatives with respect to several performance measures, including the accuracy of results when the summary is used directly to provide approximate query results, the spatial deviation with which spatio-temporal path queries can be answered when the summary is used as an index, and the time taken to construct the summary. Superior results on the quality of the summary and the compression ratio are also demonstrated

    Reverse spatial visual top-k query

    Get PDF
    With the wide application of mobile Internet techniques an location-based services (LBS), massive multimedia data with geo-tags has been generated and collected. In this paper, we investigate a novel type of spatial query problem, named reverse spatial visual top- kk query (RSVQ k ) that aims to retrieve a set of geo-images that have the query as one of the most relevant geo-images in both geographical proximity and visual similarity. Existing approaches for reverse top- kk queries are not suitable to address this problem because they cannot effectively process unstructured data, such as image. To this end, firstly we propose the definition of RSVQ k problem and introduce the similarity measurement. A novel hybrid index, named VR 2 -Tree is designed, which is a combination of visual representation of geo-image and R-Tree. Besides, an extension of VR 2 -Tree, called CVR 2 -Tree is introduced and then we discuss the calculation of lower/upper bound, and then propose the optimization technique via CVR 2 -Tree for further pruning. In addition, a search algorithm named RSVQ k algorithm is developed to support the efficient RSVQ k query. Comprehensive experiments are conducted on four geo-image datasets, and the results illustrate that our approach can address the RSVQ k problem effectively and efficiently

    Dynamic-parinet (D-parinet) : indexing present and future trajectories in networks

    Get PDF
    While indexing historical trajectories is a hot topic in the field of moving objects (MO) databases for many years, only a few of them consider that the objects movements are constrained. DYNAMIC-PARINET (D-PATINET) is designed for capturing of trajectory data flow in multiple discrete small time interval efficiently and to predict a MO’s movement or the underlying network state at a future time. The cornerstone of D-PARINET is PARINET, an efficient index for historical trajectory data. The structure of PARINET is based on a combination of graph partitioning and a set of composite B+-tree local indexes tuned for a given query load and a given data distribution in the network space. D-PARINET studies continuous update of trajectory data and use interpolation to predict future MO movement in the network. PARINET and D-PARINET can easily be integrated into any RDBMS, which is an essential asset particularly for industrial or commercial applications. The experimental evaluation under an off-the-shelf DBMS using simulated traffic data shows that DPARINET is robust and significantly outperforms the R-tree based access methods

    Advance of the Access Methods

    Get PDF
    The goal of this paper is to outline the advance of the access methods in the last ten years as well as to make review of all available in the accessible bibliography methods
    • …
    corecore