336 research outputs found
Assessment of off-axis and in-line electron holography for measurement of potential variations in Cu(In,Ga)Se thin-film solar cells
A review on nanotechnological aspects in medicinal textile
Nanoscience and Technology has become popular and touched almost every branch of science and technology. Textile engineering is also not exception. Various nanoparticles are being used in smart textiles and technical textile products. Medical textile is an important area and have much opportunities for innovation and discoveries. Therefore, nanomaterials are used in medical textiles to have exotic properties. Herein we have discussed several methods for the characterization of materials at nanoscale. The common spectroscopic techniques like UV-Visible spectroscopy and microscopic techniques like scanning electron microscopy and transmission electron microscope routinely used in material characterization are discussed in detail. In the last section of the article we discussed various applications of nanomaterials in modern medical textile. The nanomaterials are used in surgical gowns, sanitary napkins, UV protection appliances, antimicrobial coating, sutures etc. Some advanced nanomaterials can be used in disease diagnosis, flame retardants, efficient drug delivery systems etc
Atomic-Scale Insights into Light Emitting Diode
In solid-state lightning, GaN-based vertical LED technology has attracted tremendous attention because its luminous efficacy has surpassed the traditional lightning technologies, even the 2014 Nobel Prize in Physics was awarded for the invention of efficient blue LEDs, which enabled eco-friendly and energy-saving white lighting sources. Despite today’s GaN-based blue VLEDs can produce IQE of 90% and EQE of 70-80%, still there exist a major challenge of efficiency droop. Nonetheless, state-of-the-art material characterization and failure analysis tools are inevitable to address that issue. In this context, although LEDs have been characterized by different microscopy techniques, they are still limited to either its semiconductor or active layer, which mainly contributes towards the IQE. This is also one of the reason that today’s LEDs IQE exceeded above 80% but EQE of 70-80% remains. Therefore, to scrutinize the efficiency droop issue, this work focused on developing a novel strategy to investigate key layers of the LED structure, which play the critical role in enhancing the EQE = IQE x LEE factors. Based on that strategy, wafer bonding, reflection, GaN-Ag interface, MQWs and top-textured layers have been systematically investigated under the powerful advanced microscopy techniques of SEM-based TKD/EDX/EBSD, AC-STEM, AFM, Raman spectroscopy, XRD, and PL. Further, based on these correlative microscopy results, optimization suggestions are given for performance enhancement in the LEDs. The objective of this doctoral research is to perform atomic-scale characterization on the VLED layers/interfaces to scrutinize their surface topography, grain morphology, chemical composition, interfacial diffusion, atomic structure and carrier localization mechanism in quest of efficiency droop and reliability issues. The outcome of this research advances in understanding LED device physics, which will facilitate standardization in its design for better smart optoelectronics products
Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode
All-solid-state batteries promise significant safety and energy density advantages over liquid-electrolyte batteries. The interface between the cathode and the solid electrolyte is an important contributor to charge transfer resistance. Strong bonding of solid oxide electrolytes and cathodes requires sintering at elevated temperatures. Knowledge of the temperature dependence of the composition and charge transfer properties of this interface is important for determining the ideal sintering conditions. To understand the interfacial decomposition processes and their onset temperatures, model systems of LiCoO2 (LCO) thin films deposited on cubic Al-doped Li7La3Zr2O12 (LLZO) pellets were studied as a function of temperature using interface-sensitive techniques. X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and energy-dispersive X-ray spectroscopy (EDS) data indicated significant cation interdiffusion and structural changes starting at temperatures as low as 300°C. La2Zr2O7 and Li2CO3 were identified as decomposition products after annealing at 500°C by synchrotron X-ray diffraction (XRD). X-ray absorption spectroscopy (XAS) results indicate the presence of also LaCoO3, in addition to La2Zr2O7 and Li2CO3. Based on electrochemical impedance spectroscopy, and depth profiling of the Li distribution upon potentiostatic hold experiments on symmetric LCO|LLZO|LCO cells, the interfaces exhibited significantly increased impedance, up to 8 times that of the as-deposited samples after annealing at 500°C. Our results indicate that lower-temperature processing conditions, shorter annealing time scales, and CO2-free environments are desirable for obtaining ceramic cathode-electrolyte interfaces that enable fast Li transfer and high capacity
Controlled growth and doping of core-shell GaAs-based nanowires
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010.Includes bibliographical references (p. 151-158).The use of compound semiconductor heterostructures to create electron confinement has enabled the highest frequency and lowest noise semiconductor electronics in existence. Modem technology uses two-dimensional electron gasses and there is considerable interest to explore one-dimensional electron confinement. This thesis develops the materials science toolkit needed to fabricate, characterize, and control the compositional, structural and electronic properties of core-shell GaAs/AlGaAs nanowires towards studying quasi-one-dimensional confinement and developing high mobility electronics First, nanowire growth kinetics were studied to optimize nanowire morphology. Variations in nanowire diameter were eliminated by understanding the role Ga adatom diffusion on sidewall deposition and vertical growth was enabled by understanding the importance of Ga and As mass-transport to nanowire nucleation. These results demonstrate that arrays of vertically-aligned GaAs nanowires can be produced. Then, the deposition of epitaxial AlGaAs shells on GaAs nanowires was demonstrated. By reducing the nanowire aerial density the stability of the nanowire geometry was maintained. A variety of analytical electron microscopy techniques confirmed the shell deposition to be uniform, epitaxial, defect-free, and nearly atomic sharp. These results demonstrate that core-shell nanowires possess a core-shell interface free of many of the imperfections that lithographically-defined nanowires possess. Finally, the adverse effect of the Au seed nanoparticle during n-type doping was identified and n-type doping was achieved via the removal of the Au nanoparticle prior to doping. A combination of energy dispersive X-ray spectroscopy, current-voltage, capacitance-voltage, and Kelvin probe force microscopy demonstrated that if the Au seed nanoparticle is present during the shell deposition, Au diffuses from the seed nanoparticle and creates a rectifying IV behavior. A process was presented to remove the Au nanoparticle prior to shell deposition and was shown to produce uniform n-type doping. The conductivity of GaAs/n-GaAs nanowires was calculated as a function of donor concentration and geometric factors taking into account the effects of Fermi level pinning. The control demonstrated over all of these parameters is sufficient enough for core-shell nanowires to be considered candidates for high mobility electronics.by Michael Joseph Tambe.Ph.D
Non-Destructive, High-Resolution, Chemically Specific, 3D Nanostructure Characterization using Phase-Sensitive EUV Imaging Reflectometry
Next-generation nano and quantum devices have increasingly complex 3D
structure. As the dimensions of these devices shrink to the nanoscale, their
performance is often governed by interface quality or precise chemical or
dopant composition. Here we present the first phase-sensitive extreme
ultraviolet imaging reflectometer. It combines the excellent phase stability of
coherent high-harmonic sources, the unique chemical- and phase-sensitivity of
extreme ultraviolet reflectometry, and state-of-the-art ptychography imaging
algorithms. This tabletop microscope can non-destructively probe surface
topography, layer thicknesses, and interface quality, as well as dopant
concentrations and profiles. High-fidelity imaging was achieved by implementing
variable-angle ptychographic imaging, by using total variation regularization
to mitigate noise and artifacts in the reconstructed image, and by using a
high-brightness, high-harmonic source with excellent intensity and wavefront
stability. We validate our measurements through multiscale, multimodal imaging
to show that this technique has unique advantages compared with other
techniques based on electron and scanning-probe microscopies.Comment: 47 pages, 16 figures (4 in main text, 12 supplement) 2 table
Hydrogen Desorption below 150 °c in MgH2-TiH2 Composite Nanoparticles: Equilibrium and Kinetic Properties
Reversible hydrogen sorption coupled with the MgH2 <-> Mg phase transformation was achieved in the remarkably low 340-425 K temperature range using MgH2-TiH2 composite nanoparticles obtained by reactive gas-phase condensation of Mg Ti vapors under He/H-2 atmosphere. The equilibrium pressures determined by in situ measurements at low temperature were slightly above those predicted using enthalpy Delta H and entropy Delta S of bulk magnesium. A single van't Hoff fit over a range extended up to 550 K yields the thermodynamic parameters Delta H = 68.1 0.9 kJ/molH(2) and Delta S = 119 2 J/(Kmo1H2) for hydride decomposition. A desorption rate of 0.18 wt % H-2/min was measured at T = 423 K and p(H-2) approximate to 1 mbar, i.e., close to equilibrium, without using a Pd catalysts. The nanoparticles displayed a small absorption desorption pressure hysteresis even at low temperatures. We critically discuss the influence exerted by nanostructural features such as interface free energy, elastic clamping, and phase mixing at the single nanopartide level on equilibrium and kinetic properties of hydrogen sorption
Photoelectrochemical Water Splitting for Hydrogen Production Using III-V Semiconductor Materials
The use of photoelectrochemical (PEC) water splitting to harvest intermittent solar sources in the form of hydrogen is an attractive potential method to address energy and environmental issues. Since 1972, when Honda and Fujishima demonstrated the use of titanium dioxide (TiO2) in PEC water splitting (1), extensive efforts have been devoted to the development of photoelectrode stability and high solar-to-hydrogen efficiency. Metal oxides (e.g. TiO2, Fe2O3, BiVO4, and SrTiO2) have been extensively studied but their large band gap and sluggish charge transfer kinetics typically limited their solar-to-hydrogen conversion efficiency (1-9). III-V semiconductor materials have proven attractive for PEC water splitting due to their high efficiency, optimal band gap, and excellent optical properties but they are readily susceptible to corrosion in strongly acidic or basic aqueous solutions during the PEC process (10-18). This thesis aims to construct a PEC device (e.g. photoanode and photocathode) based on III-V semiconductor materials (such as InGaN, GaP, and GaPSb) for PEC water splitting. The design of a direct PEC water splitting device requires a suitable band gap to cover the entire solar spectrum (visible range), which leads to a high photocurrent and solar-to-hydrogen (STH) efficiency. The band edge alignment must straddle the hydrogen and oxygen redox potentials and stable under illumination in electrolyte conditions (19). However, the current challenge is to develop efficient and stable solar-to-chemical conversion systems based on III-V semiconductor materials for PEC water splitting. This can be addressed by incorporating novel co-catalysts that are physically and electrically attached to the surface of the photoelectrodes. The role of the co-catalyst is to minimize the overpotentials and accelerate the charge kinetics at the semiconductor/electrolyte interface (20). Additionally, the surface modification strategy of applying co-catalysts can extend the stability of the photoelectrode for long-time operation (21-25)
- …
