15 research outputs found

    An implementation of CAD in Maple utilising problem formulation, equational constraints and truth-table invariance

    Get PDF
    Cylindrical algebraic decomposition (CAD) is an important tool for the investigation of semi-algebraic sets, with applications within algebraic geometry and beyond. We recently reported on a new implementation of CAD in Maple which implemented the original algorithm of Collins and the subsequent improvement to projection by McCallum. Our implementation was in contrast to Maple's in-built CAD command, based on a quite separate theory. Although initially developed as an investigative tool to compare the algorithms, we found and reported that our code offered functionality not currently available in any other existing implementations. One particularly important piece of functionality is the ability to produce order-invariant CADs. This has allowed us to extend the implementation to produce CADs invariant with respect to either equational constraints (ECCADs) or the truth-tables of sequences of formulae (TTICADs). This new functionality is contained in the second release of our code, along with commands to consider problem formulation which can be a major factor in the tractability of a CAD. In the report we describe the new functionality and some theoretical discoveries it prompted. We describe how the CADs produced using equational constraints are able to take advantage of not just improved projection but also improvements in the lifting phase. We also present an extension to the original TTICAD algorithm which increases both the applicability of TTICAD and its relative benefit over other algorithms. The code and an introductory Maple worksheet / pdf demonstrating the full functionality of the package are freely available online.Comment: 12 pages; University of Bath, Dept. Computer Science Technical Report Series, 2013-02, 201

    Constructing Fewer Open Cells by GCD Computation in CAD Projection

    Full text link
    A new projection operator based on cylindrical algebraic decomposition (CAD) is proposed. The new operator computes the intersection of projection factor sets produced by different CAD projection orders. In other words, it computes the gcd of projection polynomials in the same variables produced by different CAD projection orders. We prove that the new operator still guarantees obtaining at least one sample point from every connected component of the highest dimension, and therefore, can be used for testing semi-definiteness of polynomials. Although the complexity of the new method is still doubly exponential, in many cases, the new operator does produce smaller projection factor sets and fewer open cells. Some examples of testing semi-definiteness of polynomials, which are difficult to be solved by existing tools, have been worked out efficiently by our program based on the new method.Comment: Accepted by ISSAC 2014 (July 23--25, 2014, Kobe, Japan

    Finding best possible constant for a polynomial inequality

    Get PDF
    Given a multi-variant polynomial inequality with a parameter, how to find the best possible value of this parameter that satisfies the inequality? For instance, find the greatest number k that satisfies a 3 +b 3 +c 3 +k(a 2 b+b 2 c+c 2 a)−(k+1)(ab 2 +bc 2 +ca 2 ) ≥ 0 for all nonnegative real numbers a, b, c. Analogues problems often appeared in studies of inequalities and were dealt with by various methods. In this paper, a general algorithm is proposed for finding the required best possible constant. The algorithm can be easily implemented by computer algebra tools such as Maple

    Validity proof of Lazard's method for CAD construction

    Full text link
    In 1994 Lazard proposed an improved method for cylindrical algebraic decomposition (CAD). The method comprised a simplified projection operation together with a generalized cell lifting (that is, stack construction) technique. For the proof of the method's validity Lazard introduced a new notion of valuation of a multivariate polynomial at a point. However a gap in one of the key supporting results for his proof was subsequently noticed. In the present paper we provide a complete validity proof of Lazard's method. Our proof is based on the classical parametrized version of Puiseux's theorem and basic properties of Lazard's valuation. This result is significant because Lazard's method can be applied to any finite family of polynomials, without any assumption on the system of coordinates. It therefore has wider applicability and may be more efficient than other projection and lifting schemes for CAD.Comment: 21 page

    An Implementation of CAD in Maple Utilising Problem Formulation, Equational Constraints and Truth-Table Invariance

    Get PDF
    corecore