32 research outputs found

    Risk Analysis for Smart Cities Urban Planners: Safety and Security in Public Spaces

    Get PDF
    Christopher Alexander in his famous writings "The Timeless Way of Building" and "A pattern language" defined a formal language for the description of a city. Alexander developed a generative grammar able to formally describe complex and articulated concepts of architecture and urban planning to define a common language that would facilitate both the participation of ordinary citizens and the collaboration between professionals in architectural and urban planning. In this research, a similar approach has been applied to let two domains communicate although they are very far in terms of lexicon, methodologies and objectives. These domains are urban planning, urban design and architecture, seen as the first domain both in terms of time and in terms of completeness of vision, and the one relating to the world of engineering, made by innumerable disciplines. In practice, there is a domain that defines the requirements and the overall vision (the first) and a domain (the second) which implements them with real infrastructures and systems. To put these two worlds seamlessly into communication, allowing the concepts of the first world to be translated into those of the second, Christopher Alexander’s idea has been followed by defining a common language. By applying Essence, the software engineering formal descriptive theory, using its customization rules, to the concept of a Smart City, a common language to completely trace the requirements at all levels has been defined. Since the focus was on risk analysis for safety and security in public spaces, existing risk models have been considered, evidencing a further gap also within the engineering world itself. Depending on the area being considered, risk management models have different and siloed approaches which ignore the interactions of one type of risk with the others. To allow effective communication between the two domains and within the engineering domain, a unified risk analysis framework has been developed. Then a framework (an ontology) capable of describing all the elements of a Smart City has been developed and combined with the common language to trace the requirements. Following the philosophy of the Vienna Circle, a creative process called Aufbau has then been defined to allow the generation of a detailed description of the Smart City, at any level, using the common language and the ontology above defined. Then, the risk analysis methodology has been applied to the city model produced by Aufbau. The research developed tools to apply such results to the entire life cycle of the Smart City. With these tools, it is possible to understand how much a given architectural, urban planning or urban design requirement is operational at a given moment. In this way, the narration can accurately describe how much the initial requirements set by architects, planners and urban designers and, above all, the values required by stakeholders, are satisfied, at any time. The impact of this research on urban planning is the ability to create a single model between the two worlds, leaving everyone free to express creativity and expertise in the appropriate forms but, at the same time, allowing both to fill the communication gap existing today. This new way of planning requires adequate IT tools and takes the form, from the engineering side, of harmonization of techniques already in use and greater clarity of objectives. On the side of architecture, urban planning and urban design, it is instead a powerful decision support tool, both in the planning and operational phases. This decision support tool for Urban Planning, based on the research results, is the starting point for the development of a meta-heuristic process using an evolutionary approach. Consequently, risk management, from Architecture/Urban Planning/Urban Design up to Engineering, in any phase of the Smart City’s life cycle, is seen as an “organism” that evolves.Christopher Alexander nei suoi famosi scritti "The Timeless Way of Building" e "A pattern language" ha definito un linguaggio formale per la descrizione di una città, sviluppando una grammatica in grado di descrivere formalmente concetti complessi e articolati di architettura e urbanistica, definendo un linguaggio comune per facilitare la partecipazione dei comuni cittadini e la collaborazione tra professionisti. In questa ricerca, un approccio simile è stato applicato per far dialogare due domini sebbene siano molto distanti in termini di lessico, metodologie e obiettivi. Essi sono l'urbanistica, l'urban design e l'architettura, visti come primo dominio sia in termini di tempo che di completezza di visione, e quello del mondo dell'ingegneria, con numerose discipline. In pratica, esiste un dominio che definisce i requisiti e la visione d'insieme (il primo) e un dominio (il secondo) che li implementa con infrastrutture e sistemi reali. Per metterli in perfetta comunicazione, permettendo di tradurre i concetti del primo in quelli del secondo, si è seguita l'idea di Alexander definendo un linguaggio. Applicando Essence, la teoria descrittiva formale dell'ingegneria del software al concetto di Smart City, è stato definito un linguaggio comune per tracciarne i requisiti a tutti i livelli. Essendo il focus l'analisi dei rischi per la sicurezza negli spazi pubblici, sono stati considerati i modelli di rischio esistenti, evidenziando un'ulteriore lacuna anche all'interno del mondo dell'ingegneria stessa. A seconda dell'area considerata, i modelli di gestione del rischio hanno approcci diversi e isolati che ignorano le interazioni di un tipo di rischio con gli altri. Per consentire una comunicazione efficace tra i due domini e all'interno del dominio dell'ingegneria, è stato sviluppato un quadro di analisi del rischio unificato. Quindi è stato sviluppato un framework (un'ontologia) in grado di descrivere tutti gli elementi di una Smart City e combinato con il linguaggio comune per tracciarne i requisiti. Seguendo la filosofia del Circolo di Vienna, è stato poi definito un processo creativo chiamato Aufbau per consentire la generazione di una descrizione dettagliata della Smart City, a qualsiasi livello, utilizzando il linguaggio comune e l'ontologia sopra definita. Infine, la metodologia dell'analisi del rischio è stata applicata al modello di città prodotto da Aufbau. La ricerca ha sviluppato strumenti per applicare tali risultati all'intero ciclo di vita della Smart City. Con questi strumenti è possibile capire quanto una data esigenza architettonica, urbanistica o urbanistica sia operativa in un dato momento. In questo modo, la narrazione può descrivere con precisione quanto i requisiti iniziali posti da architetti, pianificatori e urbanisti e, soprattutto, i valori richiesti dagli stakeholder, siano soddisfatti, in ogni momento. L'impatto di questa ricerca sull'urbanistica è la capacità di creare un modello unico tra i due mondi, lasciando ognuno libero di esprimere creatività e competenza nelle forme appropriate ma, allo stesso tempo, permettendo ad entrambi di colmare il gap comunicativo oggi esistente. Questo nuovo modo di progettare richiede strumenti informatici adeguati e si concretizza, dal lato ingegneristico, in un'armonizzazione delle tecniche già in uso e in una maggiore chiarezza degli obiettivi. Sul versante dell'architettura, dell'urbanistica e del disegno urbano, è invece un potente strumento di supporto alle decisioni, sia in fase progettuale che operativa. Questo strumento di supporto alle decisioni per la pianificazione urbana, basato sui risultati della ricerca, è il punto di partenza per lo sviluppo di un processo meta-euristico utilizzando un approccio evolutivo

    Melody Informatics: Computational Approaches to Understanding the Relationships Between Human Affective Reasoning and Music

    Get PDF
    Music is a powerful and complex medium that allows people to express their emotions, while enhancing focus and creativity. It is a universal medium that can elicit strong emotion in people, regardless of their gender, age or cultural background. Music is all around us, whether it is in the sound of raindrops, birds chirping, or a popular song played as we walk along an aisle in a supermarket. Music can also significantly help us regain focus while doing a number of different tasks. The relationship between music stimuli and humans has been of particular interest due to music's multifaceted effects on human brain and body. While music can have an anticonvulsant effect on people's bodily signals and act as a therapeutic stimulus, it can also have proconvulsant effects such as triggering epileptic seizures. It is also unclear what types of music can help to improve focus while doing other activities. Although studies have recognised the effects of music in human physiology, research has yet to systematically investigate the effects of different genres of music on human emotion, and how they correlate with their subjective and physiological responses. The research set out in this thesis takes a human-centric computational approach to understanding how human affective (emotional) reasoning is influenced by sensory input, particularly music. Several user studies are designed in order to collect human physiological data while they interact with different stimuli. Physiological signals considered are: electrodermal activity (EDA), blood volume pulse (BVP), skin temperature (ST), pupil dilation (PD), electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Several computational approaches, including traditional machine learning approaches with a combination of feature selection methods are proposed which can effectively identify patterns from small to medium scale physiological feature sets. A novel data visualisation approach called "Gingerbread Animation" is proposed, which allows physiological signals to be converted into images that are compatible with transfer learning methods. A novel stacked ensemble based deep learning model is also proposed to analyse large-scale physiological datasets. In the beginning of this research, two user studies were designed to collect physiological signals from people interacting with visual stimuli. The computational models showed high efficacy in detecting people's emotional reactions. The results provided motivation to design a third user study, where these visual stimuli were combined with music stimuli. The results from the study showed decline in recognition accuracy comparing to the previous study. These three studies also gave a key insight that people's physiological response provide a stronger indicator of their emotional state, compared with their verbal statements. Based on the outcomes of the first three user studies, three more user studies were carried out to look into people's physiological responses to music stimuli alone. Three different music genres were investigated: classical, instrumental and pop music. Results from the studies showed that human emotion has a strong correlation with different types of music, and these can be computationally identified using their physiological response. Findings from this research could provide motivation to create advanced wearable technologies such as smartwatches or smart headphones that could provide personalised music recommendation based on an individual's physiological state. The computational approaches can be used to distinguish music based on their positive or negative effect on human mental health. The work can enhance existing music therapy techniques and lead to improvements in various medical and affective computing research

    Feature Papers of Drones - Volume II

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 24–41 are focused on drone applications, but emphasize two types: firstly, those related to agriculture and forestry (articles 24–35) where the number of applications of drones dominates all other possible applications. These articles review the latest research and future directions for precision agriculture, vegetation monitoring, change monitoring, forestry management, and forest fires. Secondly, articles 36–41 addresses the water and marine application of drones for ecological and conservation-related applications with emphasis on the monitoring of water resources and habitat monitoring. Finally, articles 42–54 looks at just a few of the huge variety of potential applications of civil drones from different points of view, including the following: the social acceptance of drone operations in urban areas or their influential factors; 3D reconstruction applications; sensor technologies to either improve the performance of existing applications or to open up new working areas; and machine and deep learning development

    Computational Investigation of Swirling Jet Impingement in a Concentrated Solar Tower Receiver

    Get PDF
    With growing concern of climate change and environmental pollution the need for better renewable technologies is a necessity. Solar energy shows the most promise in meeting global energy needs and competing with fossil fuels economically. Currently solar power is generated with photovoltaic (PV) panels and stored in batteries. The disadvantages of PV are expensive batteries, limitations on panel efficiencies and electrical grid considerations to balance electricity generation. Concentrated solar power (CSP) is an alternative that addresses PV limitations and shows potential in a hybrid power generation mix, especially because of its thermal storage capabilities and ability to provide process heat directly. CSP consists of a variety of systems. Of all available CSP technologies, solar power towers (SPT) show potential to reach high temperatures and effectively store thermal energy. For SPT the central receiver shows promise for improvement in effectively capturing heat. Of the many methods available to improve heat transfer, jet impingement with swirl can improve heat transfer for the receiver fluid. Jet impingement heat transfer is well known to enhance local heat transfer because of the local increase in the heat transfer coefficient and Nusselt number. Swirling flows have also shown to enhance heat transfer for internal pipe flow arrangements and other heat transfer applications. The effect of swirl and jet impingement are not often considered cumulatively as in the current study. For a proposed solar receiver design, a swirling impinging jet is proposed to enhance heat transfer. The flow behaviour is investigated numerically using computational fluid dynamics (CFD). Ansys Fluent is used to model the flow behaviour and to validate the model with available experimental results. From the validation study the Transition Shear-Stress-Transport turbulence model is shown to predict jet impingement the best. A 2D axisymmetric assumption is however shown to not predict the heat transfer well while a costly full 3D transient Large Eddy simulation does. As LES is too expensive for use in a parametric investigation, both 2D and 3D RANS simulations were used as an engineering tool to improve and optimise heat transfer, keeping in mind their shortcomings. Swirling jet impingement is further investigated for a curved impingement surface. This is the first investigation of its kind where swirl, jet impingement and a curved impingement surface are considered. From the validation study, a CFD model is used to investigate how curvature affects heat transfer. The parameters show that surface curvature has a large effect on heat transfer and it is shown that a potential optimal curvature exists for the unique flow arrangement. A surrogate optimisation model is used from the numerical results to improve the design. To provide a realistic heat source on the solar receiver, Monte Carlo ray tracing (MCRT) is used to model the heliostat field. The MCRT model can better predict the solar flux distribution on the receiver absorbing surface. The solar flux distribution is an important consideration for the receiver design. The CFD model of the receiver showed that while swirling jet impingement did not increase the outlet temperature of the heat transfer fluid, it did however show potential to reduce the receiver’s maximum surface temperature and as well as radiation losses. The thermal enhancements made do however come at the cost of an increased pressure drop.Dissertation (MEng)--University of Pretoria, 2021.Mechanical and Aeronautical EngineeringMEngUnrestricte

    Automated Assessment of the Aftermath of Typhoons Using Social Media Texts

    Full text link
    Disasters are one of the major threats to economics and human societies, causing substantial losses of human lives, properties and infrastructures. It has been our persistent endeavors to understand, prevent and reduce such disasters, and the popularization of social media is offering new opportunities to enhance disaster management in a crowd-sourcing approach. However, social media data is also characterized by its undue brevity, intense noise, and informality of language. The existing literature has not completely addressed these disadvantages, otherwise vast manual efforts are devoted to tackling these problems. The major focus of this research is on constructing a holistic framework to exploit social media data in typhoon damage assessment. The scope of this research covers data collection, relevance classification, location extraction and damage assessment while assorted approaches are utilized to overcome the disadvantages of social media data. Moreover, a semi-supervised or unsupervised approach is prioritized in forming the framework to minimize manual intervention. In data collection, query expansion strategy is adopted to optimize the search recall of typhoon-relevant information retrieval. Multiple filtering strategies are developed to screen the keywords and maintain the relevance to search topics in the keyword updates. A classifier based on a convolutional neural network is presented for relevance classification, with hashtags and word clusters as extra input channels to augment the information. In location extraction, a model is constructed by integrating Bidirectional Long Short-Time Memory and Conditional Random Fields. Feature noise correction layers and label smoothing are leveraged to handle the noisy training data. Finally, a multi-instance multi-label classifier identifies the damage relations in four categories, and the damage categories of a message are integrated with the damage descriptions score to obtain damage severity score for the message. A case study is conducted to verify the effectiveness of the framework. The outcomes indicate that the approaches and models developed in this study significantly improve in the classification of social media texts especially under the framework of semi-supervised or unsupervised learning. Moreover, the results of damage assessment from social media data are remarkably consistent with the official statistics, which demonstrates the practicality of the proposed damage scoring scheme

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore