2,423 research outputs found

    A New Ultra-lightweight RFID Authentication Protocol using Merge and Separation Operations

    Get PDF
    Abstract Since Low-cost RFID tags have very limited hardware resources, it is difficult to implement an authentication protocol which uses heavy operations such as modern ciphers or hash functions. It has been presented some ultra-lightweight RFID authentication protocols for low-cost RFID tags by using very light operations. Recently, Jeon and Yoon proposed a new ultra-lightweight RFID authentication protocol. They defined and used the merge and separation operations. The merge operation can merge the bits from two bit strings and the separation operation is an inverse operation of the merge operation. However, we found that the protocol cannot serve correctly when the collision of tag pseudonyms is occurred. In this paper, we propose an improved authentication protocol that solves the problem. We show that the proposed protocol can resist various security attacks and is efficient enough to implement low-cost RFID tags

    Trusted-HB: a low-cost version of HB+ secure against Man-in-The-Middle attacks

    Full text link
    Since the introduction at Crypto'05 by Juels and Weis of the protocol HB+, a lightweight protocol secure against active attacks but only in a detection based-model, many works have tried to enhance its security. We propose here a new approach to achieve resistance against Man-in-The-Middle attacks. Our requirements - in terms of extra communications and hardware - are surprisingly low.Comment: submitted to IEEE Transactions on Information Theor

    A Fault Analytic Method against HB+

    Get PDF
    The search for lightweight authentication protocols suitable for low-cost RFID tags constitutes an active and challenging research area. In this context, a family of protocols based on the LPN problem has been proposed: the so-called HB-family. Despite the rich literature regarding the cryptanalysis of these protocols, there are no published results about the impact of fault analysis over them. The purpose of this paper is to fill this gap by presenting a fault analytic method against a prominent member of the HB-family: HB+ protocol. We demonstrate that the fault analysis model can lead to a flexible and effective attack against HB-like protocols, posing a serious threat over them

    AnonPri: A Secure Anonymous Private Authentication Protocol for RFID Systems

    Get PDF
    Privacy preservation in RFID systems is a very important issue in modern day world. Privacy activists have been worried about the invasion of user privacy while using various RFID systems and services. Hence, significant efforts have been made to design RFID systems that preserve users\u27 privacy. Majority of the privacy preserving protocols for RFID systems require the reader to search all tags in the system in order to identify a single RFID tag which not efficient for large scale systems. In order to achieve high-speed authentication in large-scale RFID systems, researchers propose tree-based approaches, in which any pair of tags share a number of key components. Another technique is to perform group-based authentication that improves the tradeoff between scalability and privacy by dividing the tags into a number of groups. This novel authentication scheme ensures privacy of the tags. However, the level of privacy provided by the scheme decreases as more and more tags are compromised. To address this issue, in this paper, we propose a group based anonymous private authentication protocol (AnonPri) that provides higher level of privacy than the above mentioned group based scheme and achieves better efficiency (in terms of providing privacy) than the approaches that prompt the reader to perform an exhaustive search. Our protocol guarantees that the adversary cannot link the tag responses even if she can learn the identifier of the tags. Our evaluation results demonstrates that the level of privacy provided by AnonPri is higher than that of the group based authentication technique

    AnonPri: A Secure Anonymous Private Authentication Protocol for RFID Systems

    Get PDF
    Privacy preservation in RFID systems is a very important issue in modern day world. Privacy activists have been worried about the invasion of user privacy while using various RFID systems and services. Hence, significant efforts have been made to design RFID systems that preserve users\u27 privacy. Majority of the privacy preserving protocols for RFID systems require the reader to search all tags in the system in order to identify a single RFID tag which not efficient for large scale systems. In order to achieve high-speed authentication in large-scale RFID systems, researchers propose tree-based approaches, in which any pair of tags share a number of key components. Another technique is to perform group-based authentication that improves the tradeoff between scalability and privacy by dividing the tags into a number of groups. This novel authentication scheme ensures privacy of the tags. However, the level of privacy provided by the scheme decreases as more and more tags are compromised. To address this issue, in this paper, we propose a group based anonymous private authentication protocol (AnonPri) that provides higher level of privacy than the above mentioned group based scheme and achieves better efficiency (in terms of providing privacy) than the approaches that prompt the reader to perform an exhaustive search. Our protocol guarantees that the adversary cannot link the tag responses even if she can learn the identifier of the tags. Our evaluation results demonstrates that the level of privacy provided by AnonPri is higher than that of the group based authentication technique

    Efficient and Low-Cost RFID Authentication Schemes

    Get PDF
    Security in passive resource-constrained Radio Frequency Identification (RFID) tags is of much interest nowadays. Resistance against illegal tracking, cloning, timing, and replay attacks are necessary for a secure RFID authentication scheme. Reader authentication is also necessary to thwart any illegal attempt to read the tags. With an objective to design a secure and low-cost RFID authentication protocol, Gene Tsudik proposed a timestamp-based protocol using symmetric keys, named YA-TRAP*. Although YA-TRAP* achieves its target security properties, it is susceptible to timing attacks, where the timestamp to be sent by the reader to the tag can be freely selected by an adversary. Moreover, in YA-TRAP*, reader authentication is not provided, and a tag can become inoperative after exceeding its pre-stored threshold timestamp value. In this paper, we propose two mutual RFID authentication protocols that aim to improve YA-TRAP* by preventing timing attack, and by providing reader authentication. Also, a tag is allowed to refresh its pre-stored threshold value in our protocols, so that it does not become inoperative after exceeding the threshold. Our protocols also achieve other security properties like forward security, resistance against cloning, replay, and tracking attacks. Moreover, the computation and communication costs are kept as low as possible for the tags. It is important to keep the communication cost as low as possible when many tags are authenticated in batch-mode. By introducing aggregate function for the reader-to-server communication, the communication cost is reduced. We also discuss different possible applications of our protocols. Our protocols thus capture more security properties and more efficiency than YA-TRAP*. Finally, we show that our protocols can be implemented using the current standard low-cost RFID infrastructures.Comment: 21 pages, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), Vol 2, No 3, pp. 4-25, 201
    • …
    corecore