5,798 research outputs found

    An Improved Deep Neural Network for Modeling Speaker Characteristics at Different Temporal Scales

    Full text link
    This paper presents an improved deep embedding learning method based on convolutional neural network (CNN) for text-independent speaker verification. Two improvements are proposed for x-vector embedding learning: (1) Multi-scale convolution (MSCNN) is adopted in frame-level layers to capture complementary speaker information in different receptive fields. (2) A Baum-Welch statistics attention (BWSA) mechanism is applied in pooling-layer, which can integrate more useful long-term speaker characteristics in the temporal pooling layer. Experiments are carried out on the NIST SRE16 evaluation set. The results demonstrate the effectiveness of MSCNN and show the proposed BWSA can further improve the performance of the DNN embedding systemComment: 5 pages,2 figure

    Recent Progresses in Deep Learning based Acoustic Models (Updated)

    Full text link
    In this paper, we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques. We first discuss acoustic models that can effectively exploit variable-length contextual information, such as recurrent neural networks (RNNs), convolutional neural networks (CNNs), and their various combination with other models. We then describe acoustic models that are optimized end-to-end with emphasis on feature representations learned jointly with rest of the system, the connectionist temporal classification (CTC) criterion, and the attention-based sequence-to-sequence model. We further illustrate robustness issues in speech recognition systems, and discuss acoustic model adaptation, speech enhancement and separation, and robust training strategies. We also cover modeling techniques that lead to more efficient decoding and discuss possible future directions in acoustic model research.Comment: This is an updated version with latest literature until ICASSP2018 of the paper: Dong Yu and Jinyu Li, "Recent Progresses in Deep Learning based Acoustic Models," vol.4, no.3, IEEE/CAA Journal of Automatica Sinica, 201

    A general-purpose deep learning approach to model time-varying audio effects

    Full text link
    Audio processors whose parameters are modified periodically over time are often referred as time-varying or modulation based audio effects. Most existing methods for modeling these type of effect units are often optimized to a very specific circuit and cannot be efficiently generalized to other time-varying effects. Based on convolutional and recurrent neural networks, we propose a deep learning architecture for generic black-box modeling of audio processors with long-term memory. We explore the capabilities of deep neural networks to learn such long temporal dependencies and we show the network modeling various linear and nonlinear, time-varying and time-invariant audio effects. In order to measure the performance of the model, we propose an objective metric based on the psychoacoustics of modulation frequency perception. We also analyze what the model is actually learning and how the given task is accomplished.Comment: audio files: https://mchijmma.github.io/modeling-time-varying

    Machine learning in acoustics: theory and applications

    Full text link
    Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.Comment: Published with free access in Journal of the Acoustical Society of America, 27 Nov. 201

    Improved TDNNs using Deep Kernels and Frequency Dependent Grid-RNNs

    Full text link
    Time delay neural networks (TDNNs) are an effective acoustic model for large vocabulary speech recognition. The strength of the model can be attributed to its ability to effectively model long temporal contexts. However, current TDNN models are relatively shallow, which limits the modelling capability. This paper proposes a method of increasing the network depth by deepening the kernel used in the TDNN temporal convolutions. The best performing kernel consists of three fully connected layers with a residual (ResNet) connection from the output of the first to the output of the third. The addition of spectro-temporal processing as the input to the TDNN in the form of a convolutional neural network (CNN) and a newly designed Grid-RNN was investigated. The Grid-RNN strongly outperforms a CNN if different sets of parameters for different frequency bands are used and can be further enhanced by using a bi-directional Grid-RNN. Experiments using the multi-genre broadcast (MGB3) English data (275h) show that deep kernel TDNNs reduces the word error rate (WER) by 6% relative and when combined with the frequency dependent Grid-RNN gives a relative WER reduction of 9%.Comment: 5 pages, 3 figures, 2 tables, to appear in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018

    Supervised Speech Separation Based on Deep Learning: An Overview

    Full text link
    Speech separation is the task of separating target speech from background interference. Traditionally, speech separation is studied as a signal processing problem. A more recent approach formulates speech separation as a supervised learning problem, where the discriminative patterns of speech, speakers, and background noise are learned from training data. Over the past decade, many supervised separation algorithms have been put forward. In particular, the recent introduction of deep learning to supervised speech separation has dramatically accelerated progress and boosted separation performance. This article provides a comprehensive overview of the research on deep learning based supervised speech separation in the last several years. We first introduce the background of speech separation and the formulation of supervised separation. Then we discuss three main components of supervised separation: learning machines, training targets, and acoustic features. Much of the overview is on separation algorithms where we review monaural methods, including speech enhancement (speech-nonspeech separation), speaker separation (multi-talker separation), and speech dereverberation, as well as multi-microphone techniques. The important issue of generalization, unique to supervised learning, is discussed. This overview provides a historical perspective on how advances are made. In addition, we discuss a number of conceptual issues, including what constitutes the target source.Comment: 27 pages, 17 figure

    Representation Learning with Contrastive Predictive Coding

    Full text link
    While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universal unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in latent space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments

    Spectrum and Prosody Conversion for Cross-lingual Voice Conversion with CycleGAN

    Full text link
    Cross-lingual voice conversion aims to change source speaker's voice to sound like that of target speaker, when source and target speakers speak different languages. It relies on non-parallel training data from two different languages, hence, is more challenging than mono-lingual voice conversion. Previous studies on cross-lingual voice conversion mainly focus on spectral conversion with a linear transformation for F0 transfer. However, as an important prosodic factor, F0 is inherently hierarchical, thus it is insufficient to just use a linear method for conversion. We propose the use of continuous wavelet transform (CWT) decomposition for F0 modeling. CWT provides a way to decompose a signal into different temporal scales that explain prosody in different time resolutions. We also propose to train two CycleGAN pipelines for spectrum and prosody mapping respectively. In this way, we eliminate the need for parallel data of any two languages and any alignment techniques. Experimental results show that our proposed Spectrum-Prosody-CycleGAN framework outperforms the Spectrum-CycleGAN baseline in subjective evaluation. To our best knowledge, this is the first study of prosody in cross-lingual voice conversion.Comment: Accepted to APSIPA ASC 202

    Deep Speech 2: End-to-End Speech Recognition in English and Mandarin

    Full text link
    We show that an end-to-end deep learning approach can be used to recognize either English or Mandarin Chinese speech--two vastly different languages. Because it replaces entire pipelines of hand-engineered components with neural networks, end-to-end learning allows us to handle a diverse variety of speech including noisy environments, accents and different languages. Key to our approach is our application of HPC techniques, resulting in a 7x speedup over our previous system. Because of this efficiency, experiments that previously took weeks now run in days. This enables us to iterate more quickly to identify superior architectures and algorithms. As a result, in several cases, our system is competitive with the transcription of human workers when benchmarked on standard datasets. Finally, using a technique called Batch Dispatch with GPUs in the data center, we show that our system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale

    MelNet: A Generative Model for Audio in the Frequency Domain

    Full text link
    Capturing high-level structure in audio waveforms is challenging because a single second of audio spans tens of thousands of timesteps. While long-range dependencies are difficult to model directly in the time domain, we show that they can be more tractably modelled in two-dimensional time-frequency representations such as spectrograms. By leveraging this representational advantage, in conjunction with a highly expressive probabilistic model and a multiscale generation procedure, we design a model capable of generating high-fidelity audio samples which capture structure at timescales that time-domain models have yet to achieve. We apply our model to a variety of audio generation tasks, including unconditional speech generation, music generation, and text-to-speech synthesis---showing improvements over previous approaches in both density estimates and human judgments
    • …
    corecore