291 research outputs found

    Practical Certificateless Aggregate Signatures From Bilinear Maps

    Get PDF
    Aggregate signature is a digital signature with a striking property that anyone can aggregate n individual signatures on n different messages which are signed by n distinct signers, into a single compact signature to reduce computational and storage costs. In this work, two practical certificateless aggregate signature schemes are proposed from bilinear maps. The first scheme CAS-1 reduces the costs of communication and signer-side computation but trades off the storage, while CAS-2 minimizes the storage but sacrifices the communication costs. One can choose either of the schemes by consideration of the application requirement. Compare with ID-based schemes, our schemes do not entail public key certificates as well and achieve the trust level 3, which imply the frauds of the authority are detectable. Both of the schemes are proven secure in the random oracle model by assuming the intractability of the computational Diffie-Hellman problem over the groups with bilinear maps, where the forking lemma technique is avoided

    Lagrangian Recurrent Steganalysis and Hyper Elliptic Certificateless Signcryption for Secure Image Transmission

    Get PDF
    Present-day evolution in communication and information technology dispenses straightforward and effortless access to data, but the most noteworthy condition is the formation of secure communication. Numerous approaches were designed for safety communication. One of the crucial approaches is image steganography. Moreover, provisioning of information security services is arrived at via cryptosystems where cryptosystems make certain the secure messages transmission between the users in an untrustworthy circumstance.  The conventional method of providing encryption and signature is said to be first signing and then encryption, but both the computation and communication costs are found to be high. A certificateless signcryption mechanism is designed to transfer the medical data or images securely. This mechanism will minimize the storage and verification costs of public key certificates. The author of this article proposes a method named Lagrangian recurrent Steganalysis and Hyper Elliptic Certificateless Signcryption for transferring the medical data or images securely. In two sections the LRS-HECS method is split. They are medical image steganalysis and certificateless signcryption. First with the Chest X-Ray images obtained as input, a Codeword Correlated Lagrangian Recurrent Neural Network-based image steganography model is applied to generate steg images. Second, to transfer the medical images securely the steg images provided as input is designed a model named a Hyper Elliptic Curve-based Certificateless Signcryption. The issue of providing the integrity and validity of the transmitted medical images and receiver anonymity is addressed by the application of Hyper Elliptic Curve. Chest X-Ray pictures were used in experimental simulations, and the findings showed that the LRS-HECS approach had more advantages over existing state-of-the-art methods in terms of higher peak signal to noise ratio with data integrity and with reduced encryption time and transmission cost

    Cryptanalysis of an online/offline certificateless signature scheme for Internet of Health Things

    Get PDF
    Recently, Khan et al. [An online-offline certificateless signature scheme for internet of health things,” Journal of Healthcare Engineering, vol. 2020] presented a new certificateless offline/online signature scheme for Internet of Health Things (IoHT) to fulfill the authenticity requirements of the resource-constrained environment of (IoHT) devices. The authors claimed that the newly proposed scheme is formally secured against Type-I adversary under the Random Oracle Model (ROM). Unfortunately, their scheme is insecure against adaptive chosen message attacks. It is demonstrated that an adversary can forge a valid signature on a message by replacing the public key. Furthermore, we performed a comparative analysis of the selective parameters including computation time, communication overhead, security, and formal proof by employing Evaluation based on Distance from Average Solution (EDAS). The analysis shows that the designed scheme of Khan et al. doesn’t have any sort of advantage over the previous schemes. Though, the authors utilized a lightweight hyperelliptic curve cryptosystem with a smaller key size of 80-bits. Finally, we give some suggestions on the construction of a concrete security scheme under ROM

    RSA authentication mechanisms in control grid computing environment using Gridsim toolkit

    Get PDF
    There are security concerns when our sensitive data is placed in the third party infrastructure such as in the Grid Computing environment. As such, it is difficult to be assured that our data is in the safe hands.Thus, authentication has become the most critical factor pertaining to this.There are several approaches has been discussed in the grid computing environment on the safeguard, scalable and efficient authentication that are either Virtual Organization centric or Resource centric.Most of the grid computing uses public key infrastructure (PKI) to secure the identification, but the vulnerability are still cannot be avoid. In order to satisfy the security need of grid computing environment, we design an alternative authentication mechanism using RSA algorithm to ensure the user identification, and carry out the experiment in the Gridsim toolkit simulator

    Aggregatable Certificateless Designated Verifier Signature

    Get PDF
    In recent years, the Internet of Things (IoT) devices have become increasingly deployed in many industries and generated a large amount of data that needs to be processed in a timely and efficient manner. Using aggregate signatures, it provides a secure and efficient way to handle large numbers of digital signatures with the same message. Recently, the privacy issue has been concerned about the topic of data sharing on the cloud. To provide the integrity, authenticity, authority, and privacy on the data sharing in the cloud storage, the notion of an aggregatable certificateless designated verifier signature scheme (ACLDVS) was proposed. ACLDVS also is a perfect tool to enable efficient privacy-preserving authentication systems for IoT and or the vehicular ad hoc networks (VANET). Our concrete scheme was proved to be secured underling of the Computational Diffie-Hellman assumption. Compared to other related schemes, our scheme is efficient, and the signature size is considerably short

    APEX2S: A Two-Layer Machine Learning Model for Discovery of host-pathogen protein-protein Interactions on Cloud-based Multiomics Data

    Get PDF
    Presented by the avalanche of biological interactions data, computational biology is now facing greater challenges on big data analysis and solicits more studies to mine and integrate cloud-based multiomics data, especially when the data are related to infectious diseases. Meanwhile, machine learning techniques have recently succeeded in different computational biology tasks. In this article, we have calibrated the focus for host-pathogen protein-protein interactions study, aiming to apply the machine learning techniques for learning the interactions data and making predictions. A comprehensive and practical workflow to harness different cloud-based multiomics data is discussed. In particular, a novel two-layer machine learning model, namely APEX2S, is proposed for discovery of the protein-protein interactions data. The results show that our model can better learn and predict from the accumulated host-pathogen protein-protein interactions
    corecore