2,379 research outputs found

    Factorization of Z-homogeneous polynomials in the First (q)-Weyl Algebra

    Full text link
    We present algorithms to factorize weighted homogeneous elements in the first polynomial Weyl algebra and qq-Weyl algebra, which are both viewed as a Z\mathbb{Z}-graded rings. We show, that factorization of homogeneous polynomials can be almost completely reduced to commutative univariate factorization over the same base field with some additional uncomplicated combinatorial steps. This allows to deduce the complexity of our algorithms in detail. Furthermore, we will show for homogeneous polynomials that irreducibility in the polynomial first Weyl algebra also implies irreducibility in the rational one, which is of interest for practical reasons. We report on our implementation in the computer algebra system \textsc{Singular}. It outperforms for homogeneous polynomials currently available implementations dealing with factorization in the first Weyl algebra both in speed and elegancy of the results.Comment: 26 pages, Singular implementation, 2 algorithms, 1 figure, 2 table

    Invariant Form of BK-factorization and its Applications

    Full text link
    Invariant form of BK-factorization is presented, it is used for factorization of the LPDOs equivalent under gauge transformation and for construction of approximate factorization simplifying numerical simulsations with corresponding LPDEs of higher orderComment: 11 pages, 7 figure

    Constructive factorization of LPDO in two variables

    Full text link
    We study conditions under which a partial differential operator of arbitrary order nn in two variables or ordinary linear differential operator admits a factorization with a first-order factor on the left. The factorization process consists of solving, recursively, systems of linear equations, subject to certain differential compatibility conditions. In the generic case of partial differential operators one does not have to solve a differential equation. In special degenerate cases, such as ordinary differential, the problem is finally reduced to the solution of some Riccati equation(s). The conditions of factorization are given explicitly for second- and, and an outline is given for the higher-order case.Comment: 16 pages, to be published in Journal "Theor. Math. Phys." (2005

    Fast Computation of Common Left Multiples of Linear Ordinary Differential Operators

    Full text link
    We study tight bounds and fast algorithms for LCLMs of several linear differential operators with polynomial coefficients. We analyze the arithmetic complexity of existing algorithms for LCLMs, as well as the size of their outputs. We propose a new algorithm that recasts the LCLM computation in a linear algebra problem on a polynomial matrix. This algorithm yields sharp bounds on the coefficient degrees of the LCLM, improving by one order of magnitude the best bounds obtained using previous algorithms. The complexity of the new algorithm is almost optimal, in the sense that it nearly matches the arithmetic size of the output.Comment: The final version will appear in Proceedings of ISSAC 201

    Methods in Mathematica for Solving Ordinary Differential Equations

    Full text link
    An overview of the solution methods for ordinary differential equations in the Mathematica function DSolve is presented.Comment: 13 page
    corecore