13 research outputs found

    Mix and match: a strategyproof mechanism for multi-hospital kidney exchange

    Get PDF
    As kidney exchange programs are growing, manipulation by hospitals becomes more of an issue. Assuming that hospitals wish to maximize the number of their own patients who receive a kidney, they may have an incentive to withhold some of their incompatible donor–patient pairs and match them internally, thus harming social welfare. We study mechanisms for two-way exchanges that are strategyproof, i.e., make it a dominant strategy for hospitals to report all their incompatible pairs. We establish lower bounds on the welfare loss of strategyproof mechanisms, both deterministic and randomized, and propose a randomized mechanism that guarantees at least half of the maximum social welfare in the worst case. Simulations using realistic distributions for blood types and other parameters suggest that in practice our mechanism performs much closer to optimal

    Paired and altruistic kidney donation in the UK: Algorithms and experimentation

    Get PDF
    We study the computational problem of identifying optimal sets of kidney exchanges in the UK. We show how to expand an integer programming-based formulation due to Roth et al. [2007] in order to model the criteria that constitute the UK definition of optimality. The software arising from this work has been used by the National Health Service Blood and Transplant to find optimal sets of kidney exchanges for their National Living Donor Kidney Sharing Schemes since July 2008. We report on the characteristics of the solutions that have been obtained in matching runs of the scheme since this time. We then present empirical results arising from experiments on the real datasets that stem from these matching runs, with the aim of establishing the extent to which the particular optimality criteria that are present in the UK influence the structure of the solutions that are ultimately computed. A key observation is that allowing four-way exchanges would be likely to lead to a moderate number of additional transplants

    Mix and match: A strategyproof mechanism for multi-hospital kidney exchange

    Get PDF
    As kidney exchange programs are growing, manipulation by hospitals becomes more of an issue. Assuming that hospitals wish to maximize the number of their own patients who receive a kidney, they may have an incentive to withhold some of their incompatible donor-patient pairs and match them internally, thus harming social welfare. We study mechanisms for two-way exchanges that are strategyproof, i.e., make it a dominant strategy for hospitals to report all their incompatible pairs. We establish lower bounds on the welfare loss of strategyproof mechanisms, both deterministic and randomized, and propose a randomized mechanism that guarantees at least half of the maximum social welfare in the worst case. Simulations using realistic distributions for blood types and other parameters suggest that in practice our mechanism performs much closer to optimal. Keywords: Approximate mechanisms without money; Kidney exchang

    Verifiably Truthful Mechanisms

    Full text link
    It is typically expected that if a mechanism is truthful, then the agents would, indeed, truthfully report their private information. But why would an agent believe that the mechanism is truthful? We wish to design truthful mechanisms, whose truthfulness can be verified efficiently (in the computational sense). Our approach involves three steps: (i) specifying the structure of mechanisms, (ii) constructing a verification algorithm, and (iii) measuring the quality of verifiably truthful mechanisms. We demonstrate this approach using a case study: approximate mechanism design without money for facility location

    Price of Fairness in Kidney Exchange.

    Full text link

    Game theoretical analysis of Kidney Exchange Programs

    Full text link
    The goal of a kidney exchange program (KEP) is to maximize number of transplants within a pool of incompatible patient-donor pairs by exchanging donors. A KEP can be modelled as a maximum matching problem in a graph. A KEP between incompatible patient-donor from pools of several hospitals, regions or countries has the potential to increase the number of transplants. These entities aim is to maximize the transplant benefit for their patients, which can lead to strategic behaviours. Recently, this was formulated as a non-cooperative two-player game and the game solutions (equilibria) were characterized when the entities objective function is the number of their patients receiving a kidney. In this paper, we generalize these results for NN-players and discuss the impact in the game solutions when transplant information quality is introduced. Furthermore, the game theory model is analyzed through computational experiments on instances generated through the Canada Kidney Paired Donation Program. These experiments highlighting the importance of using the concept of Nash equilibrium, as well as, the anticipation of the necessity to further research for supporting police makers once measures on transplant quality are available

    An improved 2-agent kidney exchange mechanism

    No full text
    Abstract. We study a mechanism design version of matching computation in graphs that models the game played by hospitals participating in pairwise kidney exchange programs. We present a new randomized matching mechanism for two agents which is truthful in expectation and has an approximation ratio of 3/2 to the maximum cardinality matching. This is an improvement over a recent upper bound of 2 [Ashlagi et al., EC 2010] and, furthermore, our mechanism beats for the first time the lower bound on the approximation ratio of deterministic truthful mechanisms. We complement our positive result with new lower bounds. Among other statements, we prove that the weaker incentive compatibility property of truthfulness in expectation in our mechanism is necessary; universally truthful mechanisms that have an inclusion-maximality property have In an attempt to address the wide need for kidney transplantation and the scarcity of cadaver kidneys, several countries have launched, or are considering
    corecore