2 research outputs found

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    An Implementation for Maintaining Arrangements of Polygons

    No full text
    Constructing arrangements of geometric objects is a basic problem in computational geometry. Applications relying on arrangements arise in such fields as robotics, assembly planning, computer vision, graphics, and computer-assisted surgery. Arrangements are also used as a building block for other theoretical results in computational geometry. Many papers and textbooks have presented algorithms for maintaining arrangements under various conditions. This pape
    corecore