1,423 research outputs found

    Contingency-Constrained Unit Commitment with Post-Contingency Corrective Recourse

    Full text link
    We consider the problem of minimizing costs in the generation unit commitment problem, a cornerstone in electric power system operations, while enforcing an N-k-e reliability criterion. This reliability criterion is a generalization of the well-known NN-kk criterion, and dictates that at least (1ej)(1-e_ j) fraction of the total system demand must be met following the failures of kk or fewer system components. We refer to this problem as the Contingency-Constrained Unit Commitment problem, or CCUC. We present a mixed-integer programming formulation of the CCUC that accounts for both transmission and generation element failures. We propose novel cutting plane algorithms that avoid the need to explicitly consider an exponential number of contingencies. Computational studies are performed on several IEEE test systems and a simplified model of the Western US interconnection network, which demonstrate the effectiveness of our proposed methods relative to current state-of-the-art

    Co-Optimization of Gas-Electricity Integrated Energy Systems Under Uncertainties

    Get PDF
    In the United States, natural gas-fired generators have gained increasing popularity in recent years due to low fuel cost and emission, as well as the needed large gas reserves. Consequently, it is worthwhile to consider the high interdependency between the gas and electricity networks. In this dissertation, several co-optimization models for the optimal operation and planning of gas-electricity integrated energy systems (IES) are proposed and investigated considering uncertainties from wind power and load demands. For the coordinated operation of gas-electricity IES: 1) an interval optimization based coordinated operating strategy for the gas-electricity IES is proposed to improve the overall system energy efficiency and optimize the energy flow. The gas and electricity infrastructures are modeled in detail and their operation constraints are fully considered. Then, a demand response program is incorporated into the optimization model, and its effects on the IES operation are investigated. Interval optimization is applied to address wind power uncertainty in IES. 2) a stochastic optimal operating strategy for gas-electricity IES is proposed considering N-1 contingencies in both gas and electricity networks. Since gas pipeline contingencies limit the fuel deliverability to gas-fired units, N-1 contingencies in both gas and electricity networks are considered to ensure that the system operation is able to sustain any possible power transmission or gas pipeline failure. Moreover, wind power uncertainty is addressed by stochastic programming. 3) a robust scheduling model is proposed for gas-electricity IES with uncertain wind power considering both gas and electricity N-1 contingencies. The proposed method is robust against wind power uncertainty to ensure that the system can sustain possible N-1 contingency event of gas pipeline or power transmission. Case studies demonstrate the effectiveness of the proposed models. For the co-optimization planning of gas-electricity IES: a two-stage robust optimization model is proposed for expansion co-planning of gas-electricity IES. The proposed model is solved by the column and constraint generation (C&CG) algorithm. The locations and capacities of new gas-fired generators, power transmission lines, and gas pipelines are optimally determined, which is robust against the uncertainties from electric and gas load growth as well as wind power

    Maximum Loadability Enhancement with a Hybrid Optimization Method

    Get PDF
    Nowadays, a power system is operating in a stressed condition due to the increase in demand in addition to constraint in building new power plants. The economics and environmental constraints to build new power plants and transmission lines have led the system to operate very close to its stability limits. Hence, more researches are required to study the important requirements to maintain stable voltage condition and hence develop new techniques in order to address the voltage stability problem. As an action, most Reactive Power Planning (RPP) objective is to minimize the cost of new reactive resources while satisfying the voltage stability constraints and labeled as Secured Reactive Power Planning (SCRPP). The new alternative optimization technique called Adaptive Tumbling Bacterial Foraging (ATBFO) was introduced to solve the RPP problems in the IEEE 57 bus system. The comparison common optimization Meta-Heuristic Evolutionary Programming and original Bacterial Foraging techniques were chosen to verify the performance using the proposed ATBFO method. As a result, the ATBFO method is confirmed as the best suitable solution in solving the identified RPP objective functions

    Decentralized control and fair load-shedding compensations to prevent cascading failures in a smart grid

    Get PDF
    AbstractEvidence shows that a small number of line contingencies in power systems may cause a large-scale blackout due to the effects of cascading failures. With the development of new technologies and the growing number of heterogeneous participants, a modern/smart grid should be able to self-heal its internal disturbances by continually performing self-assessment to deter, detect, respond to and restore from unpredictable contingencies. Along this line, this research focuses on the problem of how to prevent the occurrence of cascading failures through load shedding by considering heterogeneous shedding costs of grid participants. A fair load-shedding algorithm is proposed to solve the problem in a decentralized manner, where a load-shedding participant need only monitor its own operational status and interact with its neighboring participants. Using an embedded feedback mechanism, the fair load-shedding algorithm can determine a marginal compensation price for each load-shedding participant in real time based on the proportional fairness criterion, without knowing the shedding costs of the participants. Such fairly determined compensations can help motivate loaders/generators to actively participate in the load shedding in the face of internal disturbances. Finally, the properties of the load-shedding algorithm are evaluated by carrying out an experimental study on the standard IEEE 30 bus system. The study will offer new insights into emergency planning and design improvement of self-healing smart grids

    Optimal distributed generation and load shedding scheme using artificial bee colony- hill climbing algorithm considering voltage stability and losses indices

    Get PDF
    Around the world, the demand is increasing due to industrial activity and advances in both developing and developed countries. This situation has pushed many power system operators to operate their system closer to the voltage stability limits. Increase in power consumption can cause serious problems in electric power systems, such as voltage instability, frequency instability, line overloading, and power system blackouts.Voltage stability index (VSI) is a tool for detecting voltage stability related problems. This work proposes an index of the line voltage stability limits based on Thevenin’s Theorem, which is referred to as the Maximum Line Stability Index (MLSI). The function of MLSI is to estimate the voltage stability condition and determine sensitive lines in power system. To increase voltage stability and improve other aspects of power quality, many power system operators are considering the idea of integrating distributed energy resources into the existing power system. Another part of this work focuses on enhancing the stability of the power system using distributed generator (DG). The proposed solution is based on the optimization method developed from a combination of the Artificial Bee Colony and Hill Climbing algorithms (ABC-HC) to give the optimal placement and sizing of DG units to be deployed in the system. Under severe contingency conditions, such as increase in demand and loss of transmission lines, frequently the problem cannot be solved by just using the DG, the possible solution is to consider load shedding as to reduce the congestion in order to maintain voltage stability in the system. To solve this problem, an optimal load shedding approach, integrated with optimal DG sizing is proposed using the ABC-HC algorithm. This technique can find the load location to be shed, as well as the size of DG. The performance and effectiveness of each proposed solution was tested on IEEE test systems. The simulation results showed that the MLSI index has strong sensitivity to detect the overloaded line in the system and as reliable as other voltage stability indices. Meanwhile, the proposed ABC-HC optimization technique shows its ability to identify the bus location and the optimal active energy injection from the DG with a substantial power loss reduction. Finally, under severe contingency condition, the optimization of DGs and load shedding shows the system able to maintain its voltage stability

    Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems

    Get PDF
    The electrical power system is undergoing a revolution enabled by advances in telecommunications, computer hardware and software, measurement, metering systems, IoT, and power electronics. Furthermore, the increasing integration of intermittent renewable energy sources, energy storage devices, and electric vehicles and the drive for energy efficiency have pushed power systems to modernise and adopt new technologies. The resulting smart grid is characterised, in part, by a bi-directional flow of energy and information. The evolution of the power grid, as well as its interconnection with energy storage systems and renewable energy sources, has created new opportunities for optimising not only their techno-economic aspects at the planning stages but also their control and operation. However, new challenges emerge in the optimization of these systems due to their complexity and nonlinear dynamic behaviour as well as the uncertainties involved.This volume is a selection of 20 papers carefully made by the editors from the MDPI topic “Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems”, which was closed in April 2022. The selected papers address the above challenges and exemplify the significant benefits that optimisation and nonlinear control techniques can bring to modern power and energy systems
    corecore