2 research outputs found

    An FPGA-based instrument for en-masse RRAM characterization with ns pulsing resolution

    No full text
    An FPGA-based instrument with capabilities of on-board oscilloscope and nanoscale pulsing (70 ns @ \pm 10 V) is presented, thus allowing exploration of the nano-scale switching of RRAM devices. The system possesses less than 1% read-out error for resistance range between 1 text{k}\Omega to 1 text{M}\Omega , and demonstrated its functionality on characterizing solid-state prototype RRAM devices on wafer; devices exhibiting gradual switching behavior under pulsing with duration spanning between 30 ns to 100 \µs. The data conversion error-induced degradation on read-out accuracy is studied extensively and verified by standard linear resistor measurements. The integrated oscilloscope capability extends the versatility of our instrument, rendering a powerful tool for processing development of emerging memory technologies but also for testing theoretical hypotheses arising in the new field of memristors

    An FPGA-based system for generalised electron devices testing

    Get PDF
    Electronic systems are becoming more and more ubiquitous as our world digitises. Simultaneously, even basic components are experiencing a wave of improvements with new transistors, memristors, voltage/current references, data converters, etc, being designed every year by hundreds of R &D groups world-wide. To date, the workhorse for testing all these designs has been a suite of lab instruments including oscilloscopes and signal generators, to mention the most popular. However, as components become more complex and pin numbers soar, the need for more parallel and versatile testing tools also becomes more pressing. In this work, we describe and benchmark an FPGA system developed that addresses this need. This general purpose testing system features a 64-channel source-meter unit, and [Formula: see text] banks of 32 digital pins for digital I/O. We demonstrate that this bench-top system can obtain [Formula: see text] current noise floor, [Formula: see text] pulse delivery at [Formula: see text] and [Formula: see text] maximum current drive/channel. We then showcase the instrument's use in performing a selection of three characteristic measurement tasks: (a) current-voltage characterisation of a diode and a transistor, (b) fully parallel read-out of a memristor crossbar array and (c) an integral non-linearity test on a DAC. This work introduces a down-scaled electronics laboratory packaged in a single instrument which provides a shift towards more affordable, reliable, compact and multi-functional instrumentation for emerging electronic technologies
    corecore