49 research outputs found

    Innovative Solutions for Navigation and Mission Management of Unmanned Aircraft Systems

    Get PDF
    The last decades have witnessed a significant increase in Unmanned Aircraft Systems (UAS) of all shapes and sizes. UAS are finding many new applications in supporting several human activities, offering solutions to many dirty, dull, and dangerous missions, carried out by military and civilian users. However, limited access to the airspace is the principal barrier to the realization of the full potential that can be derived from UAS capabilities. The aim of this thesis is to support the safe integration of UAS operations, taking into account both the user's requirements and flight regulations. The main technical and operational issues, considered among the principal inhibitors to the integration and wide-spread acceptance of UAS, are identified and two solutions for safe UAS operations are proposed: A. Improving navigation performance of UAS by exploiting low-cost sensors. To enhance the performance of the low-cost and light-weight integrated navigation system based on Global Navigation Satellite System (GNSS) and Micro Electro-Mechanical Systems (MEMS) inertial sensors, an efficient calibration method for MEMS inertial sensors is required. Two solutions are proposed: 1) The innovative Thermal Compensated Zero Velocity Update (TCZUPT) filter, which embeds the compensation of thermal effect on bias in the filter itself and uses Back-Propagation Neural Networks to build the calibration function. Experimental results show that the TCZUPT filter is faster than the traditional ZUPT filter in mapping significant bias variations and presents better performance in the overall testing period. Moreover, no calibration pre-processing stage is required to keep measurement drift under control, improving the accuracy, reliability, and maintainability of the processing software; 2) A redundant configuration of consumer grade inertial sensors to obtain a self-calibration of typical inertial sensors biases. The result is a significant reduction of uncertainty in attitude determination. In conclusion, both methods improve dead-reckoning performance for handling intermittent GNSS coverage. B. Proposing novel solutions for mission management to support the Unmanned Traffic Management (UTM) system in monitoring and coordinating the operations of a large number of UAS. Two solutions are proposed: 1) A trajectory prediction tool for small UAS, based on Learning Vector Quantization (LVQ) Neural Networks. By exploiting flight data collected when the UAS executes a pre-assigned flight path, the tool is able to predict the time taken to fly generic trajectory elements. Moreover, being self-adaptive in constructing a mathematical model, LVQ Neural Networks allow creating different models for the different UAS types in several environmental conditions; 2) A software tool aimed at supporting standardized procedures for decision-making process to identify UAS/payload configurations suitable for any type of mission that can be authorized standing flight regulations. The proposed methods improve the management and safe operation of large-scale UAS missions, speeding up the flight authorization process by the UTM system and supporting the increasing level of autonomy in UAS operations

    Design and implementation of resilient attitude estimation algorithms for aerospace applications

    Get PDF
    Satellite attitude estimation is a critical component of satellite attitude determination and control systems, relying on highly accurate sensors such as IMUs, star trackers, and sun sensors. However, the complex space environment can cause sensor performance degradation or even failure. To address this issue, FDIR systems are necessary. This thesis presents a novel approach to satellite attitude estimation that utilizes an InertialNavigation System (INS) to achieve high accuracy with the low computational load. The algorithm is based on a two-layer Kalman filter, which incorporates the quaternion estimator(QUEST) algorithm, FQA, Linear interpolation (LERP)algorithms, and KF. Moreover, the thesis proposes an FDIR system for the INS that can detect and isolate faults and recover the system safely. This system includes two-layer fault detection with isolation and two-layered recovery, which utilizes an Adaptive Unscented Kalman Filter (AUKF), QUEST algorithm, residual generators, Radial Basis Function (RBF) neural networks, and an adaptive complementary filter (ACF). These two fault detection layers aim to isolate and identify faults while decreasing the rate of false alarms. An FPGA-based FDIR system is also designed and implemented to reduce latency while maintaining normal resource consumption in this thesis. Finally, a Fault Tolerance Federated Kalman Filter (FTFKF) is proposed to fuse the output from INS and the CNS to achieve high precision and robust attitude estimation.The findings of this study provide a solid foundation for the development of FDIR systems for various applications such as robotics, autonomous vehicles, and unmanned aerial vehicles, particularly for satellite attitude estimation. The proposed INS-based approach with the FDIR system has demonstrated high accuracy, fault tolerance, and low computational load, making it a promising solution for satellite attitude estimation in harsh space environment

    Wearable Wireless Devices

    Get PDF
    No abstract available

    IMPROVED INERTIAL NAVIGATION SYSTEM USING ALL-ACCELEROMETERS

    Get PDF

    Increasing Signal to Noise Ratio and Minimising Artefacts in Biomedical Instrumentation Systems

    Get PDF
    The research work described in this thesis was concerned with finding a novel method of minimising motion artefacts in biomedical instrumentation systems. The proposed solution, an Analog Frontend (AFE), was designed to detect any vertical (Y-Plane) or horizontal (X-Plane) movement of the electrode using two strain gauges, which were separated by 90° and fitted onto the electrode. The detected motion was fed back to the system for the removal of any motion artefact. The research started by emphasising the importance of minimising motion artefacts from biomedical signals and explaining how important it is for a clinical misinterpretation of the results. Hence, various motion artefact minimisation techniques undertaken by other researchers in the field were reviewed. This study covered different sources of artefacts, including the 40kHz powerline interference (PLI), 50/60kHz common-mode noise, white noise, and motion artefacts. The system was fully developed and tested and was firstly simulated using MATLAB Simulink tools to prove the effectiveness of the system before starting the implementation and build phase in the lab. The AFE system successfully produced a clean output signal, achieving an average correlation coefficient of 0.995. Also, the system output had a 98% SNR similarity with the clean source signal. Further, the system was then built and tested in the lab and successfully minimised the motion artefacts, achieving an average correlation coefficient of 0.974. Additionally, the final output had a 97.8% SNR similarity with the clean source signal. A novel test rig was developed to test the system with strain gauges. The system was able to remove the detected signal from the test rig and had an average correlation coefficient of 0.957. Lastly, the final output had a 94.2% SNR similarity with the clean source signal

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs
    corecore