715 research outputs found

    A Practical Framework for Storing and Searching Encrypted Data on Cloud Storage

    Full text link
    Security has become a significant concern with the increased popularity of cloud storage services. It comes with the vulnerability of being accessed by third parties. Security is one of the major hurdles in the cloud server for the user when the user data that reside in local storage is outsourced to the cloud. It has given rise to security concerns involved in data confidentiality even after the deletion of data from cloud storage. Though, it raises a serious problem when the encrypted data needs to be shared with more people than the data owner initially designated. However, searching on encrypted data is a fundamental issue in cloud storage. The method of searching over encrypted data represents a significant challenge in the cloud. Searchable encryption allows a cloud server to conduct a search over encrypted data on behalf of the data users without learning the underlying plaintexts. While many academic SE schemes show provable security, they usually expose some query information, making them less practical, weak in usability, and challenging to deploy. Also, sharing encrypted data with other authorized users must provide each document's secret key. However, this way has many limitations due to the difficulty of key management and distribution. We have designed the system using the existing cryptographic approaches, ensuring the search on encrypted data over the cloud. The primary focus of our proposed model is to ensure user privacy and security through a less computationally intensive, user-friendly system with a trusted third party entity. To demonstrate our proposed model, we have implemented a web application called CryptoSearch as an overlay system on top of a well-known cloud storage domain. It exhibits secure search on encrypted data with no compromise to the user-friendliness and the scheme's functional performance in real-world applications.Comment: 146 Pages, Master's Thesis, 6 Chapters, 96 Figures, 11 Table

    Privacy preserving and serverless homomorphic-based searchable encryption as a service (SEaaS)

    Get PDF
    Serverless computing has seen rapid growth, thanks to its adaptability, elasticity, and deployment agility, embraced by both cloud providers and users. However, this surge in serverless adoption has prompted a reevaluation of security concerns and thus, searchable encryption has emerged as a crucial technology. This paper explores the Searchable Encryption as a Service (SEaaS) and introduces an innovative privacy-preserving Multiple Keyword Searchable Encryption (MKSE) scheme within a serverless cloud environment, addressing previously unmet security goals. The proposed scheme employs probabilistic encryption and leverages fully homomorphic encryption to enable operations on ciphertext, facilitating searches on encrypted data. Its core innovation lies in the use of probabilistic encryption for private multi-keyword searches. To validate its practicality, we deploy the scheme on the public cloud infrastructure, “Contabo,” and conduct rigorous testing on a real-world dataset. The results demonstrate that our novel scheme successfully preserves the privacy of search queries and access patterns, achieving robust security. This research contributes to the field of serverless cloud security, particularly in the context of searchable encryption, by providing a refined solution for safeguarding data while maintaining usability in a serverless computing landscape

    A review of the state of the art in privacy and security in the eHealth cloud

    Get PDF
    The proliferation and usefulness of cloud computing in eHealth demands high levels of security and privacy for health records. However, eHealth clouds pose serious security and privacy concerns for sensitive health data. Therefore, practical and effective methods for security and privacy management are essential to preserve the privacy and security of the data. To review the current research directions in security and privacy in eHealth clouds, this study has analysed and summarized the state of the art technologies and approaches reported in security and privacy in the eHealth cloud. An extensive review covering 132 studies from several peer-reviewed databases such as IEEE Xplore was conducted. The relevant studies were reviewed and summarized in terms of their benefits and risks. This study also compares several research works in the domain of data security requirements. This paper will provide eHealth stakeholders and researchers with extensive knowledge and information on current research trends in the areas of privacy and security

    Secure Remote Storage of Logs with Search Capabilities

    Get PDF
    Dissertação de Mestrado em Engenharia InformáticaAlong side with the use of cloud-based services, infrastructure and storage, the use of application logs in business critical applications is a standard practice nowadays. Such application logs must be stored in an accessible manner in order to used whenever needed. The debugging of these applications is a common situation where such access is required. Frequently, part of the information contained in logs records is sensitive. This work proposes a new approach of storing critical logs in a cloud-based storage recurring to searchable encryption, inverted indexing and hash chaining techniques to achieve, in a unified way, the needed privacy, integrity and authenticity while maintaining server side searching capabilities by the logs owner. The designed search algorithm enables conjunctive keywords queries plus a fine-grained search supported by field searching and nested queries, which are essential in the referred use case. To the best of our knowledge, the proposed solution is also the first to introduce a query language that enables complex conjunctive keywords and a fine-grained search backed by field searching and sub queries.A gerac¸ ˜ao de logs em aplicac¸ ˜oes e a sua posterior consulta s˜ao fulcrais para o funcionamento de qualquer neg´ocio ou empresa. Estes logs podem ser usados para eventuais ac¸ ˜oes de auditoria, uma vez que estabelecem uma baseline das operac¸ ˜oes realizadas. Servem igualmente o prop´ osito de identificar erros, facilitar ac¸ ˜oes de debugging e diagnosticar bottlennecks de performance. Tipicamente, a maioria da informac¸ ˜ao contida nesses logs ´e considerada sens´ıvel. Quando estes logs s˜ao armazenados in-house, as considerac¸ ˜oes relacionadas com anonimizac¸ ˜ao, confidencialidade e integridade s˜ao geralmente descartadas. Contudo, com o advento das plataformas cloud e a transic¸ ˜ao quer das aplicac¸ ˜oes quer dos seus logs para estes ecossistemas, processos de logging remotos, seguros e confidenciais surgem como um novo desafio. Adicionalmente, regulac¸ ˜ao como a RGPD, imp˜oe que as instituic¸ ˜oes e empresas garantam o armazenamento seguro dos dados. A forma mais comum de garantir a confidencialidade consiste na utilizac¸ ˜ao de t ´ecnicas criptogr ´aficas para cifrar a totalidade dos dados anteriormente `a sua transfer ˆencia para o servidor remoto. Caso sejam necess´ arias capacidades de pesquisa, a abordagem mais simples ´e a transfer ˆencia de todos os dados cifrados para o lado do cliente, que proceder´a `a sua decifra e pesquisa sobre os dados decifrados. Embora esta abordagem garanta a confidencialidade e privacidade dos dados, rapidamente se torna impratic ´avel com o crescimento normal dos registos de log. Adicionalmente, esta abordagem n˜ao faz uso do potencial total que a cloud tem para oferecer. Com base nesta tem´ atica, esta tese prop˜oe o desenvolvimento de uma soluc¸ ˜ao de armazenamento de logs operacionais de forma confidencial, integra e autˆ entica, fazendo uso das capacidades de armazenamento e computac¸ ˜ao das plataformas cloud. Adicionalmente, a possibilidade de pesquisa sobre os dados ´e mantida. Essa pesquisa ´e realizada server-side diretamente sobre os dados cifrados e sem acesso em momento algum a dados n˜ao cifrados por parte do servidor..
    corecore