19,327 research outputs found

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201

    Robust Independent Component Analysis via Minimum Divergence Estimation

    Full text link
    Independent component analysis (ICA) has been shown to be useful in many applications. However, most ICA methods are sensitive to data contamination and outliers. In this article we introduce a general minimum U-divergence framework for ICA, which covers some standard ICA methods as special cases. Within the U-family we further focus on the gamma-divergence due to its desirable property of super robustness, which gives the proposed method gamma-ICA. Statistical properties and technical conditions for the consistency of gamma-ICA are rigorously studied. In the limiting case, it leads to a necessary and sufficient condition for the consistency of MLE-ICA. This necessary and sufficient condition is weaker than the condition known in the literature. Since the parameter of interest in ICA is an orthogonal matrix, a geometrical algorithm based on gradient flows on special orthogonal group is introduced to implement gamma-ICA. Furthermore, a data-driven selection for the gamma value, which is critical to the achievement of gamma-ICA, is developed. The performance, especially the robustness, of gamma-ICA in comparison with standard ICA methods is demonstrated through experimental studies using simulated data and image data.Comment: 7 figure
    corecore