31,846 research outputs found

    Maximum Lqq-likelihood estimation

    Full text link
    In this paper, the maximum Lqq-likelihood estimator (MLqqE), a new parameter estimator based on nonextensive entropy [Kibernetika 3 (1967) 30--35] is introduced. The properties of the MLqqE are studied via asymptotic analysis and computer simulations. The behavior of the MLqqE is characterized by the degree of distortion qq applied to the assumed model. When qq is properly chosen for small and moderate sample sizes, the MLqqE can successfully trade bias for precision, resulting in a substantial reduction of the mean squared error. When the sample size is large and qq tends to 1, a necessary and sufficient condition to ensure a proper asymptotic normality and efficiency of MLqqE is established.Comment: Published in at http://dx.doi.org/10.1214/09-AOS687 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Pathwise Sensitivity Analysis in Transient Regimes

    Full text link
    The instantaneous relative entropy (IRE) and the corresponding instanta- neous Fisher information matrix (IFIM) for transient stochastic processes are pre- sented in this paper. These novel tools for sensitivity analysis of stochastic models serve as an extension of the well known relative entropy rate (RER) and the corre- sponding Fisher information matrix (FIM) that apply to stationary processes. Three cases are studied here, discrete-time Markov chains, continuous-time Markov chains and stochastic differential equations. A biological reaction network is presented as a demonstration numerical example

    Information Geometry Approach to Parameter Estimation in Markov Chains

    Full text link
    We consider the parameter estimation of Markov chain when the unknown transition matrix belongs to an exponential family of transition matrices. Then, we show that the sample mean of the generator of the exponential family is an asymptotically efficient estimator. Further, we also define a curved exponential family of transition matrices. Using a transition matrix version of the Pythagorean theorem, we give an asymptotically efficient estimator for a curved exponential family.Comment: Appendix D is adde

    Time and spectral domain relative entropy: A new approach to multivariate spectral estimation

    Full text link
    The concept of spectral relative entropy rate is introduced for jointly stationary Gaussian processes. Using classical information-theoretic results, we establish a remarkable connection between time and spectral domain relative entropy rates. This naturally leads to a new spectral estimation technique where a multivariate version of the Itakura-Saito distance is employed}. It may be viewed as an extension of the approach, called THREE, introduced by Byrnes, Georgiou and Lindquist in 2000 which, in turn, followed in the footsteps of the Burg-Jaynes Maximum Entropy Method. Spectral estimation is here recast in the form of a constrained spectrum approximation problem where the distance is equal to the processes relative entropy rate. The corresponding solution entails a complexity upper bound which improves on the one so far available in the multichannel framework. Indeed, it is equal to the one featured by THREE in the scalar case. The solution is computed via a globally convergent matricial Newton-type algorithm. Simulations suggest the effectiveness of the new technique in tackling multivariate spectral estimation tasks, especially in the case of short data records.Comment: 32 pages, submitted for publicatio
    corecore