143 research outputs found

    Some recent developments in theory of fractional positive and cone linear systems

    Get PDF
    The overview of some recent developments and new results in the theory of fractional positive and cone one-dimensional (1D) and two-dimensional (2D) linear systems are presented in the article. The state equations and their solution for the fractional continuous-time and discrete-time linear systems are given. Necessary and sufficient conditions for the internal and external positivity of the fractional linear systems are established. The reachability of the fractional linear systems is addressed. A new notation of the cone systems is introduced and methods for computation of such systems are proposed. Positive fractional 2D linear systems are intoduced. Necessary and sufficient conditions for the positivity and reachability are established. The considerations are illustrated with many examples of 1D and 2D linear systems.Запропоновано огляд та деякі нові результати у теорії фракційних додатніх та конусних одновимірних (1D) та двовимірних (2D) лінійних систем. Подано рівняння стану та їхнє розв’язання для фракційних неперервних та дискретних лінійних систем. Встановлено необхідні та достатні умови для внутрішньої та зовнішньої додатності фракційних лінійних систем. Показано їхню досяжність. Запропоновано нову форму запису конусних систем та методи, придатні для комп’ютерного розрахунку таких систем. Представлено додатні фракційні 2D лінійні системи. Встановлено необхідні та достатні умови для додатності та досяжності. Теоретичні виклади проілюстровано чисельними прикладами 1D та 2D лінійних систем.Предложены анализ состояния вопроса и некоторые новые результаты, полученные в теории фракционных положительных и конусных одномерных (1D) и двумерных (2D) линейных систем. Приведены уравнения состояния и их решения для фракционных непрерывных и дискретных линейных систем. Выявлены необходимые и достаточные условия для внутренней и внешней положительности фракционных линейных систем. Показана их достижимость. Предложена новая форма записи конусных систем, а также методы их компьютерного расчета. Представлены положительные фракционные 2D линейные системы. Установлены необходимые и достаточные условия для положительности и достижимости. Теоретические выкладки иллюстрированы численными примерами 1D и 1D линейных систем

    Realization Theory for LPV State-Space Representations with Affine Dependence

    Get PDF
    In this paper we present a Kalman-style realization theory for linear parameter-varying state-space representations whose matrices depend on the scheduling variables in an affine way (abbreviated as LPV-SSA representations). We deal both with the discrete-time and the continuous-time cases. We show that such a LPV-SSA representation is a minimal (in the sense of having the least number of state-variables) representation of its input-output function, if and only if it is observable and span-reachable. We show that any two minimal LPV-SSA representations of the same input-output function are related by a linear isomorphism, and the isomorphism does not depend on the scheduling variable.We show that an input-output function can be represented by a LPV-SSA representation if and only if the Hankel-matrix of the input-output function has a finite rank. In fact, the rank of the Hankel-matrix gives the dimension of a minimal LPV-SSA representation. Moreover, we can formulate a counterpart of partial realization theory for LPV-SSA representation and prove correctness of the Kalman-Ho algorithm. These results thus represent the basis of systems theory for LPV-SSA representation.Comment: The main difference with respect to the previous version is as follows: typos have been fixe

    Digital Signal Processing (Second Edition)

    Get PDF
    This book provides an account of the mathematical background, computational methods and software engineering associated with digital signal processing. The aim has been to provide the reader with the mathematical methods required for signal analysis which are then used to develop models and algorithms for processing digital signals and finally to encourage the reader to design software solutions for Digital Signal Processing (DSP). In this way, the reader is invited to develop a small DSP library that can then be expanded further with a focus on his/her research interests and applications. There are of course many excellent books and software systems available on this subject area. However, in many of these publications, the relationship between the mathematical methods associated with signal analysis and the software available for processing data is not always clear. Either the publications concentrate on mathematical aspects that are not focused on practical programming solutions or elaborate on the software development of solutions in terms of working ‘black-boxes’ without covering the mathematical background and analysis associated with the design of these software solutions. Thus, this book has been written with the aim of giving the reader a technical overview of the mathematics and software associated with the ‘art’ of developing numerical algorithms and designing software solutions for DSP, all of which is built on firm mathematical foundations. For this reason, the work is, by necessity, rather lengthy and covers a wide range of subjects compounded in four principal parts. Part I provides the mathematical background for the analysis of signals, Part II considers the computational techniques (principally those associated with linear algebra and the linear eigenvalue problem) required for array processing and associated analysis (error analysis for example). Part III introduces the reader to the essential elements of software engineering using the C programming language, tailored to those features that are used for developing C functions or modules for building a DSP library. The material associated with parts I, II and III is then used to build up a DSP system by defining a number of ‘problems’ and then addressing the solutions in terms of presenting an appropriate mathematical model, undertaking the necessary analysis, developing an appropriate algorithm and then coding the solution in C. This material forms the basis for part IV of this work. In most chapters, a series of tutorial problems is given for the reader to attempt with answers provided in Appendix A. These problems include theoretical, computational and programming exercises. Part II of this work is relatively long and arguably contains too much material on the computational methods for linear algebra. However, this material and the complementary material on vector and matrix norms forms the computational basis for many methods of digital signal processing. Moreover, this important and widely researched subject area forms the foundations, not only of digital signal processing and control engineering for example, but also of numerical analysis in general. The material presented in this book is based on the lecture notes and supplementary material developed by the author for an advanced Masters course ‘Digital Signal Processing’ which was first established at Cranfield University, Bedford in 1990 and modified when the author moved to De Montfort University, Leicester in 1994. The programmes are still operating at these universities and the material has been used by some 700++ graduates since its establishment and development in the early 1990s. The material was enhanced and developed further when the author moved to the Department of Electronic and Electrical Engineering at Loughborough University in 2003 and now forms part of the Department’s post-graduate programmes in Communication Systems Engineering. The original Masters programme included a taught component covering a period of six months based on two semesters, each Semester being composed of four modules. The material in this work covers the first Semester and its four parts reflect the four modules delivered. The material delivered in the second Semester is published as a companion volume to this work entitled Digital Image Processing, Horwood Publishing, 2005 which covers the mathematical modelling of imaging systems and the techniques that have been developed to process and analyse the data such systems provide. Since the publication of the first edition of this work in 2003, a number of minor changes and some additions have been made. The material on programming and software engineering in Chapters 11 and 12 has been extended. This includes some additions and further solved and supplementary questions which are included throughout the text. Nevertheless, it is worth pointing out, that while every effort has been made by the author and publisher to provide a work that is error free, it is inevitable that typing errors and various ‘bugs’ will occur. If so, and in particular, if the reader starts to suffer from a lack of comprehension over certain aspects of the material (due to errors or otherwise) then he/she should not assume that there is something wrong with themselves, but with the author

    Applications of equivalent representations of fractional- and integer-order linear time-invariant systems

    Get PDF
    Nicht-ganzzahlige - fraktionale - Ableitungsoperatoren beschreiben Prozesse mit Gedächtniseffekten, deshalb werden sie zur Modellierung verschiedenster Phänomene, z.B. viskoelastischen Verhaltens, genutzt. In der Regelungstechnik wird das Konzept vor allem wegen des erhöhten Freiheitsgrades im Frequenzbereich verwendet. Deshalb wurden in den vergangenen Dekaden neben einer Verallgemeinerung des PID-Reglers auch fortgeschrittenere Regelungskonzepte auf nicht-ganzzahlige Operatoren erweitert. Das Gedächtnis der nicht-ganzzahligen Ableitung ist zwar essentiell für die Modellbildung, hat jedoch Nachteile, wenn z.B. Zustände geschätzt oder Regler implementiert werden müssen: Das Gedächtnis führt zu einer langsamen, algebraischen Konvergenz der Transienten und da eine numerische Approximation ist speicherintensiv. Im Zentrum der Arbeit steht die Frage, mit welchen Maßnahmen sich das Konvergenzverhalten dieser nicht ganzzahligen Systeme beeinflussen lässt. Es wird vorgeschlagen, die Ordnung der nicht ganzzahligen Ableitung zu ändern. Zunächst werden Beobachter für verschiedene Klassen linearer zeitinvarianter Systeme entworfen. Die Entwurfsmethodik basiert dabei auf einer assoziierten Systemdarstellung, welche einen Differenzialoperator mit höherer Ordnung verwendet. Basierend auf dieser Systembeschreibung können Beobachter entworfen werden, welche das Gedächtnis besser mit einbeziehen und so schneller konvergieren. Anschließend werden ganzzahlige lineare zeitinvariante Systeme mit Hilfe nicht-ganzzahliger Operatoren dargestellt. Dies ermöglicht eine erhöhte Konvergenz im Zeitintervall direkt nach dem Anfangszeitpunkt auf Grund einer unbeschränkten ersten Ableitung. Die periodische Löschung des so eingeführten Gedächtnisses wird erzielt, indem die nicht ganzzahlige Dynamik periodisch zurückgesetzt wird. Damit wird der algebraischen Konvergenz entgegen gewirkt und exponentielle Stabilität erzielt. Der Reset reduziert den Speicherbedarf und induziert eine unterlagerte zeitdiskrete Dynamik. Diese bestimmt die Stabilität des hybriden nicht-ganzzahligen Systems und kann genutzt werden um den Frequenzgang für niedrige Frequenzen zu bestimmen. So lassen sich Beobachter und Regler für ganzzahlige System entwerfen. Im Rahmen des Reglerentwurfs können durch den Resets das Verhalten für niedrige und hohe Frequenzen in gewissen Grenzen getrennt voneinander entworfen werden.Non-integer, so-called fractional-order derivative operators allow to describe systems with infinite memory. Hence they are attractive to model various phenomena, e.g. viscoelastic deformation. In the field of control theory, both the higher degree of freedom in the frequency domain as well as the easy generalization of PID control have been the main motivation to extend various advanced control concepts to the fractional-order domain. The long term memory of these operators which helps to model real life phenomena, has, however, negative effects regarding the application as controllers or observers. Due to the infinite memory, the transients only decay algebraically and the implementation requires a lot of physical memory. The main focus of this thesis is the question of how to influence the convergence rates of these fractional-order systems by changing the type of convergence. The first part is concerned with the observer design for different classes of linear time-invariant fractional-order systems. We derive associated system representations with an increased order of differentiation. Based on these systems, the observers are designed to take the unknown memory into account and lead to higher convergence rates. The second part explores the representation of integer-order linear time-invariant systems in terms of fractional-order derivatives. The application of the fractional-order operator introduces an unbounded first-order derivative at the initial time. This accelerates the convergence for a short time interval. With periodic deletion of the memory - a reset of the fractional-order dynamics - the slow algebraic decay is avoided and exponential stability can be achieved despite the fractional-order terms. The periodic reset leads to a reduced implementation demand and also induces underlying discrete time dynamics which can be used to prove stability of the hybrid fractional-order system and to give an interpretation of the reset in the frequency domain for the low frequency signals. This concept of memory reset is applied to design an observer and improve fractional-order controllers for integer-order processes. For the controller design this gives us the possibility to design the high-frequency response independently from the behavior at lower frequencies within certain limits

    Graduate School: Course Decriptions, 1972-73

    Full text link
    Official publication of Cornell University V.64 1972/7

    Guide to Discrete Mathematics

    Get PDF
    corecore