275 research outputs found

    Managing evolution and change in web-based teaching and learning environments

    Get PDF
    The state of the art in information technology and educational technologies is evolving constantly. Courses taught are subject to constant change from organisational and subject-specific reasons. Evolution and change affect educators and developers of computer-based teaching and learning environments alike – both often being unprepared to respond effectively. A large number of educational systems are designed and developed without change and evolution in mind. We will present our approach to the design and maintenance of these systems in rapidly evolving environments and illustrate the consequences of evolution and change for these systems and for the educators and developers responsible for their implementation and deployment. We discuss various factors of change, illustrated by a Web-based virtual course, with the objective of raising an awareness of this issue of evolution and change in computer-supported teaching and learning environments. This discussion leads towards the establishment of a development and management framework for teaching and learning systems

    An XML format for benchmarks in High School Timetabling

    Get PDF
    The High School Timetabling Problem is amongst the most widely used timetabling problems. This problem has varying structures in different high schools even within the same country or educational system. Due to lack of standard benchmarks and data formats this problem has been studied less than other timetabling problems in the literature. In this paper we describe the High School Timetabling Problem in several countries in order to find a common set of constraints and objectives. Our main goal is to provide exchangeable benchmarks for this problem. To achieve this we propose a standard data format suitable for different countries and educational systems, defined by an XML schema. The schema and datasets are available online

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    Practices in timetabling in higher education institutions:A systematic review

    Get PDF
    The study of differences between timetabling research presented in conferences like PATAT or published in Annals of OR and commercial timetabling software used in Higher Education Institutions (HEIs) is essential for the discussion about innovation in both higher education and in commerce. In the field of planning and scheduling, a lot of developments are made and it is important to recognise that these developments are of influence on HEIs through their use of timetabling software. A main objective of the work presented here is to provide up-to-date information about timetabling in HEIs and see to what extent they adopt and implement timetabling developments. This is crucial because of budgets of institutions being strictly limited and remaining resources like rooms having to be shared more and more. Developments in HEIs have caused planning processes in higher education to deal with more limitations than ever, while at the same time the demand towards flexibility and availability is increasing. This paper gives the results of a systematic literature review in which differences and similarities in theory and practice of timetabling in higher education are described and discussed. We looked at state-of-the-art timetabling research for HEIs, at innovations in the field of timetabling and at changing requirements in Higher Education. The aim of this paper is to motivate the discussion about both the differences and similarities and bring timetabling application development closer to educational requirements

    An extensible benchmark and tooling for comparing reverse engineering approaches

    Get PDF
    Various tools exist to reverse engineer software source code and generate design information, such as UML projections. Each has specific strengths and weaknesses, however no standardised benchmark exists that can be used to evaluate and compare their performance and effectiveness in a systematic manner. To facilitate such comparison in this paper we introduce the Reverse Engineering to Design Benchmark (RED-BM), which consists of a comprehensive set of Java-based targets for reverse engineering and a formal set of performance measures with which tools and approaches can be analysed and ranked. When used to evaluate 12 industry standard tools performance figures range from 8.82\% to 100\% demonstrating the ability of the benchmark to differentiate between tools. To aid the comparison, analysis and further use of reverse engineering XMI output we have developed a parser which can interpret the XMI output format of the most commonly used reverse engineering applications, and is used in a number of tools

    Optimisation of maintenance scheduling strategies on the grid

    Get PDF
    The emerging paradigm of Grid Computing provides a powerful platform for the optimisation of complex computer models, such as those used to simulate real-world logistics and supply chain operations. This paper introduces a grid-based optimisation framework that provides a powerful tool for the optimisation of such computationally intensive objective functions. This framework is then used in the optimisation of maintenance scheduling strategies for fleets of aero-engines, a computationally intensive problem with a high-degree of stochastic noise

    A development and integration framework for optimisation-based enterprise solutions

    Get PDF
    The operations research literature includes some papers describing collaborative work between researchers and industry. However, not much literature exists that outlines methodologies to guide the development of a decision support module and its integration into an existing information management system. Here we describe a framework to aid the collaborative development of an optimisation solution by researchers and information system developers. The proposed framework also helps in the effective integration of the information management system and the decision support module. The framework is divided into three main components: a data model, a data extractor and validator, and a solution visualisation and auxiliary platform. We also describe our experience and positive results from applying the proposed development and integration framework to a project involving the development on an optimisation-based solution for workforce scheduling and optimisation problems. We hope that this contribution would be particularly useful for less experienced researchers and practitioners who embark on a collaborative development of a decision support module based on optimisation techniques

    A development and integration framework for optimisation-based enterprise solutions

    Get PDF
    The operations research literature includes some papers describing collaborative work between researchers and industry. However, not much literature exists that outlines methodologies to guide the development of a decision support module and its integration into an existing information management system. Here we describe a framework to aid the collaborative development of an optimisation solution by researchers and information system developers. The proposed framework also helps in the effective integration of the information management system and the decision support module. The framework is divided into three main components: a data model, a data extractor and validator, and a solution visualisation and auxiliary platform. We also describe our experience and positive results from applying the proposed development and integration framework to a project involving the development on an optimisation-based solution for workforce scheduling and optimisation problems. We hope that this contribution would be particularly useful for less experienced researchers and practitioners who embark on a collaborative development of a decision support module based on optimisation techniques

    MaxSAT Evaluation 2017 : Solver and Benchmark Descriptions

    Get PDF
    Peer reviewe

    Intelligent maintenance management in a reconfigurable manufacturing environment using multi-agent systems

    Get PDF
    Thesis (M. Tech.) -- Central University of Technology, Free State, 2010Traditional corrective maintenance is both costly and ineffective. In some situations it is more cost effective to replace a device than to maintain it; however it is far more likely that the cost of the device far outweighs the cost of performing routine maintenance. These device related costs coupled with the profit loss due to reduced production levels, makes this reactive maintenance approach unacceptably inefficient in many situations. Blind predictive maintenance without considering the actual physical state of the hardware is an improvement, but is still far from ideal. Simply maintaining devices on a schedule without taking into account the operational hours and workload can be a costly mistake. The inefficiencies associated with these approaches have contributed to the development of proactive maintenance strategies. These approaches take the device health state into account. For this reason, proactive maintenance strategies are inherently more efficient compared to the aforementioned traditional approaches. Predicting the health degradation of devices allows for easier anticipation of the required maintenance resources and costs. Maintenance can also be scheduled to accommodate production needs. This work represents the design and simulation of an intelligent maintenance management system that incorporates device health prognosis with maintenance schedule generation. The simulation scenario provided prognostic data to be used to schedule devices for maintenance. A production rule engine was provided with a feasible starting schedule. This schedule was then improved and the process was determined by adhering to a set of criteria. Benchmarks were conducted to show the benefit of optimising the starting schedule and the results were presented as proof. Improving on existing maintenance approaches will result in several benefits for an organisation. Eliminating the need to address unexpected failures or perform maintenance prematurely will ensure that the relevant resources are available when they are required. This will in turn reduce the expenditure related to wasted maintenance resources without compromising the health of devices or systems in the organisation
    corecore