2,089 research outputs found

    An Experimental Study of Cryptocurrency Market Dynamics

    Full text link
    As cryptocurrencies gain popularity and credibility, marketplaces for cryptocurrencies are growing in importance. Understanding the dynamics of these markets can help to assess how viable the cryptocurrnency ecosystem is and how design choices affect market behavior. One existential threat to cryptocurrencies is dramatic fluctuations in traders' willingness to buy or sell. Using a novel experimental methodology, we conducted an online experiment to study how susceptible traders in these markets are to peer influence from trading behavior. We created bots that executed over one hundred thousand trades costing less than a penny each in 217 cryptocurrencies over the course of six months. We find that individual "buy" actions led to short-term increases in subsequent buy-side activity hundreds of times the size of our interventions. From a design perspective, we note that the design choices of the exchange we study may have promoted this and other peer influence effects, which highlights the potential social and economic impact of HCI in the design of digital institutions.Comment: CHI 201

    Mutual-Excitation of Cryptocurrency Market Returns and Social Media Topics

    Get PDF
    Cryptocurrencies have recently experienced a new wave of price volatility and interest; activity within social media communities relating to cryptocurrencies has increased significantly. There is currently limited documented knowledge of factors which could indicate future price movements. This paper aims to decipher relationships between cryptocurrency price changes and topic discussion on social media to provide, among other things, an understanding of which topics are indicative of future price movements. To achieve this a well-known dynamic topic modelling approach is applied to social media communication to retrieve information about the temporal occurrence of various topics. A Hawkes model is then applied to find interactions between topics and cryptocurrency prices. The results show particular topics tend to precede certain types of price movements, for example the discussion of 'risk and investment vs trading' being indicative of price falls, the discussion of 'substantial price movements' being indicative of volatility, and the discussion of 'fundamental cryptocurrency value' by technical communities being indicative of price rises. The knowledge of topic relationships gained here could be built into a real-time system, providing trading or alerting signals.Comment: 3rd International Conference on Knowledge Engineering and Applications (ICKEA 2018) - Moscow, Russia (June 25-27 2018

    Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations

    Full text link
    In the last years, cryptocurrencies are increasingly popular. Even people who are not experts have started to invest in these securities and nowadays cryptocurrency exchanges process transactions for over 100 billion US dollars per month. However, many cryptocurrencies have low liquidity and therefore they are highly prone to market manipulation schemes. In this paper, we perform an in-depth analysis of pump and dump schemes organized by communities over the Internet. We observe how these communities are organized and how they carry out the fraud. Then, we report on two case studies related to pump and dump groups. Lastly, we introduce an approach to detect the fraud in real time that outperforms the current state of the art, so to help investors stay out of the market when a pump and dump scheme is in action.Comment: Accepted for publication at The 29th International Conference on Computer Communications and Networks (ICCCN 2020

    Economic Games as Estimators

    Get PDF
    Discrete event games are discrete time dynamical systems whose state transitions are discrete events caused by actions taken by agents within the game. The agents’ objectives and associated decision rules need not be known to the game designer in order to impose struc- ture on a game’s reachable states. Mechanism design for discrete event games is accomplished by declaring desirable invariant properties and restricting the state transition functions to conserve these properties at every point in time for all admissible actions and for all agents, using techniques familiar from state-feedback control theory. Building upon these connections to control theory, a framework is developed to equip these games with estimation properties of signals which are private to the agents playing the game. Token bonding curves are presented as discrete event games and numerical experiments are used to investigate their signal processing properties with a focus on input-output response dynamics.Series: Working Paper Series / Institute for Cryptoeconomics / Interdisciplinary Researc
    • …
    corecore