11,053 research outputs found

    An Experimental Security Analysis of an Industrial Robot Controller

    Get PDF
    Industrial robots, automated manufacturing, and efficient logistics processes are at the heart of the upcoming fourth industrial revolution. While there are seminal studies on the vulnerabilities of cyber-physical systems in the industry, as of today there has been no systematic analysis of the security of industrial robot controllers. We examine the standard architecture of an industrial robot and analyze a concrete deployment from a systems security standpoint. Then, we propose an attacker model and confront it with the minimal set of requirements that industrial robots should honor: precision in sensing the environment, correctness in execution of control logic, and safety for human operators. Following an experimental and practical approach, we then show how our modeled attacker can subvert such requirements through the exploitation of software vulnerabilities, leading to severe consequences that are unique to the robotics domain. We conclude by discussing safety standards and security challenges in industrial robotics

    Masquerade attack detection through observation planning for multi-robot systems

    Full text link
    The increasing adoption of autonomous mobile robots comes with a rising concern over the security of these systems. In this work, we examine the dangers that an adversary could pose in a multi-agent robot system. We show that conventional multi-agent plans are vulnerable to strong attackers masquerading as a properly functioning agent. We propose a novel technique to incorporate attack detection into the multi-agent path-finding problem through the simultaneous synthesis of observation plans. We show that by specially crafting the multi-agent plan, the induced inter-agent observations can provide introspective monitoring guarantees; we achieve guarantees that any adversarial agent that plans to break the system-wide security specification must necessarily violate the induced observation plan.Accepted manuscrip

    Resilience of multi-robot systems to physical masquerade attacks

    Full text link
    The advent of autonomous mobile multi-robot systems has driven innovation in both the industrial and defense sectors. The integration of such systems in safety-and security-critical applications has raised concern over their resilience to attack. In this work, we investigate the security problem of a stealthy adversary masquerading as a properly functioning agent. We show that conventional multi-agent pathfinding solutions are vulnerable to these physical masquerade attacks. Furthermore, we provide a constraint-based formulation of multi-agent pathfinding that yields multi-agent plans that are provably resilient to physical masquerade attacks. This formalization leverages inter-agent observations to facilitate introspective monitoring to guarantee resilience.Accepted manuscrip
    • …
    corecore