5 research outputs found

    Phase transitions in project scheduling.

    Get PDF
    The analysis of the complexity of combinatorial optimization problems has led to the distinction between problems which are solvable in a polynomially bounded amount of time (classified in P) and problems which are not (classified in NP). This implies that the problems in NP are hard to solve whereas the problems in P are not. However, this analysis is based on worst-case scenarios. The fact that a decision problem is shown to be NP-complete or the fact that an optimization problem is shown to be NP-hard implies that, in the worst case, solving it is very hard. Recent computational results obtained with a well known NP-hard problem, namely the resource-constrained project scheduling problem, indicate that many instances are actually easy to solve. These results are in line with those recently obtained by researchers in the area of artificial intelligence, which show that many NP-complete problemsexhibit so-called phase transitions, resulting in a sudden and dramatic change of computational complexity based on one or more order parameters that are characteristic of the system as a whole. In this paper we provide evidence for the existence of phase transitions in various resource-constrained project scheduling problems. We discuss the use of network complexity measures and resource parameters as potential order parameters. We show that while the network complexity measures seem to reveal continuous easy-hard or hard-easy phase-transitions, the resource parameters exhibit an easy-hard-easy transition behaviour.Networks; Problems; Scheduling; Algorithms;

    Phase Transitions and Backbones of the Asymmetric Traveling Salesman Problem

    Full text link
    In recent years, there has been much interest in phase transitions of combinatorial problems. Phase transitions have been successfully used to analyze combinatorial optimization problems, characterize their typical-case features and locate the hardest problem instances. In this paper, we study phase transitions of the asymmetric Traveling Salesman Problem (ATSP), an NP-hard combinatorial optimization problem that has many real-world applications. Using random instances of up to 1,500 cities in which intercity distances are uniformly distributed, we empirically show that many properties of the problem, including the optimal tour cost and backbone size, experience sharp transitions as the precision of intercity distances increases across a critical value. Our experimental results on the costs of the ATSP tours and assignment problem agree with the theoretical result that the asymptotic cost of assignment problem is pi ^2 /6 the number of cities goes to infinity. In addition, we show that the average computational cost of the well-known branch-and-bound subtour elimination algorithm for the problem also exhibits a thrashing behavior, transitioning from easy to difficult as the distance precision increases. These results answer positively an open question regarding the existence of phase transitions in the ATSP, and provide guidance on how difficult ATSP problem instances should be generated

    CLiFF Notes: Research in the Language Information and Computation Laboratory of The University of Pennsylvania

    Get PDF
    This report takes its name from the Computational Linguistics Feedback Forum (CLIFF), an informal discussion group for students and faculty. However the scope of the research covered in this report is broader than the title might suggest; this is the yearly report of the LINC Lab, the Language, Information and Computation Laboratory of the University of Pennsylvania. It may at first be hard to see the threads that bind together the work presented here, work by faculty, graduate students and postdocs in the Computer Science, Psychology, and Linguistics Departments, and the Institute for Research in Cognitive Science. It includes prototypical Natural Language fields such as: Combinatorial Categorial Grammars, Tree Adjoining Grammars, syntactic parsing and the syntax-semantics interface; but it extends to statistical methods, plan inference, instruction understanding, intonation, causal reasoning, free word order languages, geometric reasoning, medical informatics, connectionism, and language acquisition. With 48 individual contributors and six projects represented, this is the largest LINC Lab collection to date, and the most diverse

    An expected-cost analysis of backtracking and non-backtracking algorithms

    No full text
    Consider an infinite binary search tree in which the branches have independent random costs. Suppose that we must find an optimal (cheapest) or nearly optimal path from the root to a node at depth n. Karp and Pearl [1983] show that a bounded-lookahead backtracking algorithm A2 usually finds a nearly optimal path in linear expected time (when the costs take only the values 0 or 1). From this successful performance one might conclude that similar heuristics should be of more general use. But we find here equal success for a simpler non-backtracking bounded-lookahead algorithm, so the search model cannot support this conclusion. If, however, the search tree is generated by a branching process so that there is a possibility of nodes having no sons (or branches having prohibitive costs), then the non-backtracking algorithm is hopeless while the backtracking algorithm still performs very well. These results suggest the general guideline that backtracking becomes attractive when there is the possibility of "dead-ends " or prohibitively costly outcomes
    corecore