7,573 research outputs found

    An Exact Algorithm for the Generalized List TT-Coloring Problem

    Full text link
    The generalized list TT-coloring is a common generalization of many graph coloring models, including classical coloring, L(p,q)L(p,q)-labeling, channel assignment and TT-coloring. Every vertex from the input graph has a list of permitted labels. Moreover, every edge has a set of forbidden differences. We ask for such a labeling of vertices of the input graph with natural numbers, in which every vertex gets a label from its list of permitted labels and the difference of labels of the endpoints of each edge does not belong to the set of forbidden differences of this edge. In this paper we present an exact algorithm solving this problem, running in time O((τ+2)n)\mathcal{O}^*((\tau+2)^n), where τ\tau is the maximum forbidden difference over all edges of the input graph and nn is the number of its vertices. Moreover, we show how to improve this bound if the input graph has some special structure, e.g. a bounded maximum degree, no big induced stars or a perfect matching

    Assigning channels via the meet-in-the-middle approach

    Full text link
    We study the complexity of the Channel Assignment problem. By applying the meet-in-the-middle approach we get an algorithm for the \ell-bounded Channel Assignment (when the edge weights are bounded by \ell) running in time O((2+1)n)O^*((2\sqrt{\ell+1})^n). This is the first algorithm which breaks the (O())n(O(\ell))^n barrier. We extend this algorithm to the counting variant, at the cost of slightly higher polynomial factor. A major open problem asks whether Channel Assignment admits a O(cn)O(c^n)-time algorithm, for a constant cc independent of \ell. We consider a similar question for Generalized T-Coloring, a CSP problem that generalizes \CA. We show that Generalized T-Coloring does not admit a 22o(n)poly(r)2^{2^{o\left(\sqrt{n}\right)}} {\rm poly}(r)-time algorithm, where rr is the size of the instance.Comment: SWAT 2014: 282-29

    Optimality program in segment and string graphs

    Full text link
    Planar graphs are known to allow subexponential algorithms running in time 2O(n)2^{O(\sqrt n)} or 2O(nlogn)2^{O(\sqrt n \log n)} for most of the paradigmatic problems, while the brute-force time 2Θ(n)2^{\Theta(n)} is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in 2O(n2/3logn)2^{O(n^{2/3}\log n)} by Fox and Pach [SODA'11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time 2O(n2/3logO(1)n)2^{O(n^{2/3}\log^{O(1)}n)} on string graphs while an algorithm running in time 2o(n)2^{o(n)} for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker ETH lower bound of 2o(n2/3)2^{o(n^{2/3})} which exploits the celebrated Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent Dominating Set.Comment: 19 pages, 15 figure

    Parameterized Approximation Schemes using Graph Widths

    Full text link
    Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds
    corecore