1,913 research outputs found

    Lime: Data Lineage in the Malicious Environment

    Full text link
    Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles (i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification of a guilty entity, and identify the simplifying non repudiation and honesty assumptions. We then develop and analyze a novel accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

    GrOVe: Ownership Verification of Graph Neural Networks using Embeddings

    Full text link
    Graph neural networks (GNNs) have emerged as a state-of-the-art approach to model and draw inferences from large scale graph-structured data in various application settings such as social networking. The primary goal of a GNN is to learn an embedding for each graph node in a dataset that encodes both the node features and the local graph structure around the node. Embeddings generated by a GNN for a graph node are unique to that GNN. Prior work has shown that GNNs are prone to model extraction attacks. Model extraction attacks and defenses have been explored extensively in other non-graph settings. While detecting or preventing model extraction appears to be difficult, deterring them via effective ownership verification techniques offer a potential defense. In non-graph settings, fingerprinting models, or the data used to build them, have shown to be a promising approach toward ownership verification. We present GrOVe, a state-of-the-art GNN model fingerprinting scheme that, given a target model and a suspect model, can reliably determine if the suspect model was trained independently of the target model or if it is a surrogate of the target model obtained via model extraction. We show that GrOVe can distinguish between surrogate and independent models even when the independent model uses the same training dataset and architecture as the original target model. Using six benchmark datasets and three model architectures, we show that consistently achieves low false-positive and false-negative rates. We demonstrate that is robust against known fingerprint evasion techniques while remaining computationally efficient.Comment: 11 pages, 5 figure

    Sharing Computer Network Logs for Security and Privacy: A Motivation for New Methodologies of Anonymization

    Full text link
    Logs are one of the most fundamental resources to any security professional. It is widely recognized by the government and industry that it is both beneficial and desirable to share logs for the purpose of security research. However, the sharing is not happening or not to the degree or magnitude that is desired. Organizations are reluctant to share logs because of the risk of exposing sensitive information to potential attackers. We believe this reluctance remains high because current anonymization techniques are weak and one-size-fits-all--or better put, one size tries to fit all. We must develop standards and make anonymization available at varying levels, striking a balance between privacy and utility. Organizations have different needs and trust other organizations to different degrees. They must be able to map multiple anonymization levels with defined risks to the trust levels they share with (would-be) receivers. It is not until there are industry standards for multiple levels of anonymization that we will be able to move forward and achieve the goal of widespread sharing of logs for security researchers.Comment: 17 pages, 1 figur
    • …
    corecore