2,348 research outputs found

    An evaluation of the sparsity degree for sparse recovery with deterministic measurement matrices

    Get PDF
    International audienceThe paper deals with the estimation of the maximal sparsity degree for which a given measurement matrix allows sparse reconstruction through l1-minimization. This problem is a key issue in different applications featuring particular types of measurement matrices, as for instance in the framework of tomography with low number of views. In this framework, while the exact bound is NP hard to compute, most classical criteria guarantee lower bounds that are numerically too pessimistic. In order to achieve an accurate estimation, we propose an efficient greedy algorithm that provides an upper bound for this maximal sparsity. Based on polytope theory, the algorithm consists in finding sparse vectors that cannot be recovered by l1-minimization. Moreover, in order to deal with noisy measurements, theoretical conditions leading to a more restrictive but reasonable bounds are investigated. Numerical results are presented for discrete versions of tomo\-graphy measurement matrices, which are stacked Radon transforms corresponding to different tomograph views

    Efficient Compressive Sensing with Deterministic Guarantees Using Expander Graphs

    Get PDF
    Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. However, the existing compressive sensing methods may still suffer from relatively high recovery complexity, such as O(n^3), or can only work efficiently when the signal is super sparse, sometimes without deterministic performance guarantees. In this paper, we propose a compressive sensing scheme with deterministic performance guarantees using expander-graphs-based measurement matrices and show that the signal recovery can be achieved with complexity O(n) even if the number of nonzero elements k grows linearly with n. We also investigate compressive sensing for approximately sparse signals using this new method. Moreover, explicit constructions of the considered expander graphs exist. Simulation results are given to show the performance and complexity of the new method

    Deterministic Construction of Binary, Bipolar and Ternary Compressed Sensing Matrices

    Full text link
    In this paper we establish the connection between the Orthogonal Optical Codes (OOC) and binary compressed sensing matrices. We also introduce deterministic bipolar m×nm\times n RIP fulfilling ±1\pm 1 matrices of order kk such that m≀O(k(log⁥2n)log⁥2kln⁥log⁥2k)m\leq\mathcal{O}\big(k (\log_2 n)^{\frac{\log_2 k}{\ln \log_2 k}}\big). The columns of these matrices are binary BCH code vectors where the zeros are replaced by -1. Since the RIP is established by means of coherence, the simple greedy algorithms such as Matching Pursuit are able to recover the sparse solution from the noiseless samples. Due to the cyclic property of the BCH codes, we show that the FFT algorithm can be employed in the reconstruction methods to considerably reduce the computational complexity. In addition, we combine the binary and bipolar matrices to form ternary sensing matrices ({0,1,−1}\{0,1,-1\} elements) that satisfy the RIP condition.Comment: The paper is accepted for publication in IEEE Transaction on Information Theor

    Sparse Recovery of Positive Signals with Minimal Expansion

    Get PDF
    We investigate the sparse recovery problem of reconstructing a high-dimensional non-negative sparse vector from lower dimensional linear measurements. While much work has focused on dense measurement matrices, sparse measurement schemes are crucial in applications, such as DNA microarrays and sensor networks, where dense measurements are not practically feasible. One possible construction uses the adjacency matrices of expander graphs, which often leads to recovery algorithms much more efficient than ℓ1\ell_1 minimization. However, to date, constructions based on expanders have required very high expansion coefficients which can potentially make the construction of such graphs difficult and the size of the recoverable sets small. In this paper, we construct sparse measurement matrices for the recovery of non-negative vectors, using perturbations of the adjacency matrix of an expander graph with much smaller expansion coefficient. We present a necessary and sufficient condition for ℓ1\ell_1 optimization to successfully recover the unknown vector and obtain expressions for the recovery threshold. For certain classes of measurement matrices, this necessary and sufficient condition is further equivalent to the existence of a "unique" vector in the constraint set, which opens the door to alternative algorithms to ℓ1\ell_1 minimization. We further show that the minimal expansion we use is necessary for any graph for which sparse recovery is possible and that therefore our construction is tight. We finally present a novel recovery algorithm that exploits expansion and is much faster than ℓ1\ell_1 optimization. Finally, we demonstrate through theoretical bounds, as well as simulation, that our method is robust to noise and approximate sparsity.Comment: 25 pages, submitted for publicatio

    Stochastic collocation on unstructured multivariate meshes

    Full text link
    Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically "unstructured" collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.Comment: 29 pages, 6 figure
    • 

    corecore