865 research outputs found

    DualTable: A Hybrid Storage Model for Update Optimization in Hive

    Full text link
    Hive is the most mature and prevalent data warehouse tool providing SQL-like interface in the Hadoop ecosystem. It is successfully used in many Internet companies and shows its value for big data processing in traditional industries. However, enterprise big data processing systems as in Smart Grid applications usually require complicated business logics and involve many data manipulation operations like updates and deletes. Hive cannot offer sufficient support for these while preserving high query performance. Hive using the Hadoop Distributed File System (HDFS) for storage cannot implement data manipulation efficiently and Hive on HBase suffers from poor query performance even though it can support faster data manipulation.There is a project based on Hive issue Hive-5317 to support update operations, but it has not been finished in Hive's latest version. Since this ACID compliant extension adopts same data storage format on HDFS, the update performance problem is not solved. In this paper, we propose a hybrid storage model called DualTable, which combines the efficient streaming reads of HDFS and the random write capability of HBase. Hive on DualTable provides better data manipulation support and preserves query performance at the same time. Experiments on a TPC-H data set and on a real smart grid data set show that Hive on DualTable is up to 10 times faster than Hive when executing update and delete operations.Comment: accepted by industry session of ICDE201

    Evolutionary Neural Network Based Energy Consumption Forecast for Cloud Computing

    Get PDF
    The success of Hadoop, an open-source framework for massively parallel and distributed computing, is expected to drive energy consumption of cloud data centers to new highs as service providers continue to add new infrastructure, services and capabilities to meet the market demands. While current research on data center airflow management, HVAC (Heating, Ventilation and Air Conditioning) system design, workload distribution and optimization, and energy efficient computing hardware and software are all contributing to improved energy efficiency, energy forecast in cloud computing remains a challenge. This paper reports an evolutionary computation based modeling and forecasting approach to this problem. In particular, an evolutionary neural network is developed and structurally optimized to forecast the energy load of a cloud data center. The results, both in terms of forecasting speed and accuracy, suggest that the evolutionary neural network approach to energy consumption forecasting for cloud computing is highly promising

    Optimizations for Energy-Aware, High-Performance and Reliable Distributed Storage Systems

    Get PDF
    With the decreasing cost and wide-spread use of commodity hard drives, it has become possible to create very large-scale storage systems with less expense. However, as we approach exabyte-scale storage systems, maintaining important features such as energy-efficiency, performance, reliability and usability became increasingly difficult. Despite the decreasing cost of storage systems, the energy consumption of these systems still needs to be addressed in order to retain cost-effectiveness. Any improvements in a storage system can be outweighed by high energy costs. On the other hand, large-scale storage systems can benefit more from the object storage features for improved performance and usability. One area of concern is metadata performance bottleneck of applications reading large directories or creating a large number of files. Similarly, computation on big data where data needs to be transferred between compute and storage clusters adversely affects I/O performance. As the storage systems become more complex and larger, transferring data between remote compute and storage tiers becomes impractical. Furthermore, storage systems implement reliability typically at the file system or client level. This approach might not always be practical in terms of performance. Lastly, object storage features are usually tailored to specific use cases that makes it harder to use them in various contexts. In this thesis, we are presenting several approaches to enhance energy-efficiency, performance, reliability and usability of large-scale storage systems. To begin with, we improve the energy-efficiency of storage systems by moving I/O load to a subset of the storage nodes with energy-aware node allocation methods and turn off the unused nodes, while preserving load balance on demand. To address the metadata performance issue associated with large creates and directory reads, we represent directories with object storage collections and implement lazy creation of objects. Similarly, in-situ computation on large-scale data is enabled by using object storage features to integrate a computational framework with the existing object storage layer to eliminate the need to transfer data between compute and storage silos for better performance. We then present parity-based redundancy using object storage features to achieve reliability with less performance impact. Finally, unified storage brings together the object storage features to meet the needs of distinct use cases; such as cloud storage, big data or high-performance computing to alleviate the unnecessary fragmentation of storage resources. We evaluate each proposed approach thoroughly and validate their effectiveness in terms of improving energy-efficiency, performance, reliability and usability of a large-scale storage system
    corecore