30 research outputs found

    An Eulerian space-time finite element method for diffusion problems on evolving surfaces

    Get PDF
    In this paper, we study numerical methods for the solution of partial differential equations on evolving surfaces. The evolving hypersurface in Rd\Bbb{R}^d defines a dd-dimensional space-time manifold in the space-time continuum Rd+1\Bbb{R}^{d+1}. We derive and analyze a variational formulation for a class of diffusion problems on the space-time manifold. For this variational formulation new well-posedness and stability results are derived. The analysis is based on an inf-sup condition and involves some natural, but non-standard, (anisotropic) function spaces. Based on this formulation a discrete in time variational formulation is introduced that is very suitable as a starting point for a discontinuous Galerkin (DG) space-time finite element discretization. This DG space-time method is explained and results of numerical experiments are presented that illustrate its properties.Comment: 22 pages, 5 figure

    Cut Finite Elements for Convection in Fractured Domains

    Full text link
    We develop a cut finite element method (CutFEM) for the convection problem in a so called fractured domain which is a union of manifolds of different dimensions such that a dd dimensional component always resides on the boundary of a d+1d+1 dimensional component. This type of domain can for instance be used to model porous media with embedded fractures that may intersect. The convection problem can be formulated in a compact form suitable for analysis using natural abstract directional derivative and divergence operators. The cut finite element method is based on using a fixed background mesh that covers the domain and the manifolds are allowed to cut through a fixed background mesh in an arbitrary way. We consider a simple method based on continuous piecewise linear elements together with weak enforcement of the coupling conditions and stabilization. We prove a priori error estimates and present illustrating numerical examples

    Numerical study of the RBF-FD level set based method for partial differential equations on evolving-in-time surfaces

    Get PDF
    In this article we present a Radial Basis Function (RBF)-Finite Difference (FD) level set based method for numerical solution of partial differential equations (PDEs) of the reaction-diffusion-convection type on an evolving-in-time hypersurface Γ (t). In a series of numerical experiments we study the accuracy and robustness of the proposed scheme and demonstrate that the method is applicable to practical models

    Full Gradient Stabilized Cut Finite Element Methods for Surface Partial Differential Equations

    Get PDF
    We propose and analyze a new stabilized cut finite element method for the Laplace-Beltrami operator on a closed surface. The new stabilization term provides control of the full R3\mathbb{R}^3 gradient on the active mesh consisting of the elements that intersect the surface. Compared to face stabilization, based on controlling the jumps in the normal gradient across faces between elements in the active mesh, the full gradient stabilization is easier to implement and does not significantly increase the number of nonzero elements in the mass and stiffness matrices. The full gradient stabilization term may be combined with a variational formulation of the Laplace-Beltrami operator based on tangential or full gradients and we present a simple and unified analysis that covers both cases. The full gradient stabilization term gives rise to a consistency error which, however, is of optimal order for piecewise linear elements, and we obtain optimal order a priori error estimates in the energy and L2L^2 norms as well as an optimal bound of the condition number. Finally, we present detailed numerical examples where we in particular study the sensitivity of the condition number and error on the stabilization parameter.Comment: 20 pages, 4 figures, 5 tables. arXiv admin note: text overlap with arXiv:1507.0583

    A Trace Finite Element Method for Vector-Laplacians on Surfaces

    Full text link
    We consider a vector-Laplace problem posed on a 2D surface embedded in a 3D domain, which results from the modeling of surface fluids based on exterior Cartesian differential operators. The main topic of this paper is the development and analysis of a finite element method for the discretization of this surface partial differential equation. We apply the trace finite element technique, in which finite element spaces on a background shape-regular tetrahedral mesh that is surface-independent are used for discretization. In order to satisfy the constraint that the solution vector field is tangential to the surface we introduce a Lagrange multiplier. We show well-posedness of the resulting saddle point formulation. A discrete variant of this formulation is introduced which contains suitable stabilization terms and is based on trace finite element spaces. For this method we derive optimal discretization error bounds. Furthermore algebraic properties of the resulting discrete saddle point problem are studied. In particular an optimal Schur complement preconditioner is proposed. Results of a numerical experiment are included
    corecore