30,336 research outputs found

    Technical Report: Cooperative Multi-Target Localization With Noisy Sensors

    Full text link
    This technical report is an extended version of the paper 'Cooperative Multi-Target Localization With Noisy Sensors' accepted to the 2013 IEEE International Conference on Robotics and Automation (ICRA). This paper addresses the task of searching for an unknown number of static targets within a known obstacle map using a team of mobile robots equipped with noisy, limited field-of-view sensors. Such sensors may fail to detect a subset of the visible targets or return false positive detections. These measurement sets are used to localize the targets using the Probability Hypothesis Density, or PHD, filter. Robots communicate with each other on a local peer-to-peer basis and with a server or the cloud via access points, exchanging measurements and poses to update their belief about the targets and plan future actions. The server provides a mechanism to collect and synthesize information from all robots and to share the global, albeit time-delayed, belief state to robots near access points. We design a decentralized control scheme that exploits this communication architecture and the PHD representation of the belief state. Specifically, robots move to maximize mutual information between the target set and measurements, both self-collected and those available by accessing the server, balancing local exploration with sharing knowledge across the team. Furthermore, robots coordinate their actions with other robots exploring the same local region of the environment.Comment: Extended version of paper accepted to 2013 IEEE International Conference on Robotics and Automation (ICRA

    Fighting Bandits with a New Kind of Smoothness

    Full text link
    We define a novel family of algorithms for the adversarial multi-armed bandit problem, and provide a simple analysis technique based on convex smoothing. We prove two main results. First, we show that regularization via the \emph{Tsallis entropy}, which includes EXP3 as a special case, achieves the Θ(TN)\Theta(\sqrt{TN}) minimax regret. Second, we show that a wide class of perturbation methods achieve a near-optimal regret as low as O(TNlogN)O(\sqrt{TN \log N}) if the perturbation distribution has a bounded hazard rate. For example, the Gumbel, Weibull, Frechet, Pareto, and Gamma distributions all satisfy this key property.Comment: In Proceedings of NIPS, 201

    Graphical model-based approaches to target tracking in sensor networks: an overview of some recent work and challenges

    Get PDF
    Sensor Networks have provided a technology base for distributed target tracking applications among others. Conventional centralized approaches to the problem lack scalability in such a scenario where a large number of sensors provide measurements simultaneously under a possibly non-collaborating environment. Therefore research efforts have focused on scalable, robust, and distributed algorithms for the inference tasks related to target tracking, i.e. localization, data association, and track maintenance. Graphical models provide a rigorous tool for development of such algorithms by modeling the information structure of a given task and providing distributed solutions through message passing algorithms. However, the limited communication capabilities and energy resources of sensor networks pose the additional difculty of considering the tradeoff between the communication cost and the accuracy of the result. Also the network structure and the information structure are different aspects of the problem and a mapping between the physical entities and the information structure is needed. In this paper we discuss available formalisms based on graphical models for target tracking in sensor networks with a focus on the aforementioned issues. We point out additional constraints that must be asserted in order to achieve further insight and more effective solutions
    corecore