5,503 research outputs found

    An Error Analysis Of Galerkin Projection Methods For Linear Systems With Tensor Product Structure

    Get PDF
    Recent results on the convergence of a Galerkin projection method for the Sylvester equation are extended to more general linear systems with tensor product structure. In the Hermitian positive definite case, explicit convergence bounds are derived for Galerkin projection based on tensor products of rational Krylov subspaces. The results can be used to optimize the choice of shifts for these methods. Numerical experiments demonstrate that the convergence rates predicted by our bounds appear to be sharp

    Low-rank approximate inverse for preconditioning tensor-structured linear systems

    Full text link
    In this paper, we propose an algorithm for the construction of low-rank approximations of the inverse of an operator given in low-rank tensor format. The construction relies on an updated greedy algorithm for the minimization of a suitable distance to the inverse operator. It provides a sequence of approximations that are defined as the projections of the inverse operator in an increasing sequence of linear subspaces of operators. These subspaces are obtained by the tensorization of bases of operators that are constructed from successive rank-one corrections. In order to handle high-order tensors, approximate projections are computed in low-rank Hierarchical Tucker subsets of the successive subspaces of operators. Some desired properties such as symmetry or sparsity can be imposed on the approximate inverse operator during the correction step, where an optimal rank-one correction is searched as the tensor product of operators with the desired properties. Numerical examples illustrate the ability of this algorithm to provide efficient preconditioners for linear systems in tensor format that improve the convergence of iterative solvers and also the quality of the resulting low-rank approximations of the solution

    To be or not to be intrusive? The solution of parametric and stochastic equations - the "plain vanilla" Galerkin case

    Get PDF
    In parametric equations - stochastic equations are a special case - one may want to approximate the solution such that it is easy to evaluate its dependence of the parameters. Interpolation in the parameters is an obvious possibility, in this context often labeled as a collocation method. In the frequent situation where one has a "solver" for the equation for a given parameter value - this may be a software component or a program - it is evident that this can independently solve for the parameter values to be interpolated. Such uncoupled methods which allow the use of the original solver are classed as "non-intrusive". By extension, all other methods which produce some kind of coupled system are often - in our view prematurely - classed as "intrusive". We show for simple Galerkin formulations of the parametric problem - which generally produce coupled systems - how one may compute the approximation in a non-intusive way

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods
    corecore