4 research outputs found

    Classification of lung diseases using deep learning models

    Get PDF
    Although deep learning-based models show high performance in the medical field, they required large volumes of data which is problematic due to the protection of patient privacy and lack of publically available medical databases. In this thesis, we address the problem of medical data scarcity by considering the task of pulmonary disease detection in chest X-Ray images using small volume datasets (<1000 samples). We implement three deep convolution neural networks pre-trained on the ImageNet dataset (VGG16, ResNet-50, and InveptionV3) and asses them in the lung disease classification tasks transfer learning approach. We created a pipeline that applied segmentation on Chest X-Ray images before classifying them and we compared the performance of our framework with the existing one. We demonstrated that pre-trained models and simple classifiers such as shallow neural networks can compete with the complex systems. We also implemented activation maps for our system. The analysis of class activation maps shows that not only does the segmentation improve results in terms of accuracy but also focuses models on medically relevant areas of lungs. We validated our techniques on the publicly available Shenzhen and Montgomery datasets and compared them to the currently available solutions. Our method was able to reach the same level of accuracy as the best performing models trained on the Montgomery dataset however, the advantage of our approach is a smaller number of trainable parameters. What is more, our InceptionV3 based model almost tied with the best performing solution on the Shenzhen dataset but as previously, it is computationally less expensive

    An Ensemble SSL Algorithm for Efficient Chest X-Ray Image Classification

    No full text
    A critical component in the computer-aided medical diagnosis of digital chest X-rays is the automatic detection of lung abnormalities, since the effective identification at an initial stage constitutes a significant and crucial factor in patient&rsquo;s treatment. The vigorous advances in computer and digital technologies have ultimately led to the development of large repositories of labeled and unlabeled images. Due to the effort and expense involved in labeling data, training datasets are of a limited size, while in contrast, electronic medical record systems contain a significant number of unlabeled images. Semi-supervised learning algorithms have become a hot topic of research as an alternative to traditional classification methods, exploiting the explicit classification information of labeled data with the knowledge hidden in the unlabeled data for building powerful and effective classifiers. In the present work, we evaluate the performance of an ensemble semi-supervised learning algorithm for the classification of chest X-rays of tuberculosis. The efficacy of the presented algorithm is demonstrated by several experiments and confirmed by the statistical nonparametric tests, illustrating that reliable and robust prediction models could be developed utilizing a few labeled and many unlabeled data
    corecore