3,529 research outputs found

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    A Survey of Scheduling in Time-Sensitive Networking (TSN)

    Full text link
    TSN is an enhancement of Ethernet which provides various mechanisms for real-time communication. Time-triggered (TT) traffic represents periodic data streams with strict real-time requirements. Amongst others, TSN supports scheduled transmission of TT streams, i.e., the transmission of their packets by edge nodes is coordinated in such a way that none or very little queuing delay occurs in intermediate nodes. TSN supports multiple priority queues per egress port. The TAS uses so-called gates to explicitly allow and block these queues for transmission on a short periodic timescale. The TAS is utilized to protect scheduled traffic from other traffic to minimize its queuing delay. In this work, we consider scheduling in TSN which comprises the computation of periodic transmission instants at edge nodes and the periodic opening and closing of queue gates. In this paper, we first give a brief overview of TSN features and standards. We state the TSN scheduling problem and explain common extensions which also include optimization problems. We review scheduling and optimization methods that have been used in this context. Then, the contribution of currently available research work is surveyed. We extract and compile optimization objectives, solved problem instances, and evaluation results. Research domains are identified, and specific contributions are analyzed. Finally, we discuss potential research directions and open problems.Comment: 34 pages, 19 figures, 9 tables 110 reference

    Comparing Admission Control Architectures for Real-Time Ethernet

    Get PDF
    Industry 4.0 and Autonomous Driving are emerging resource-intensive distributed application domains that deal with open and evolving environments. These systems are subject to stringent resource, timing, and other non-functional constraints, as well as frequent reconfiguration. Thus, real-time behavior must not preclude operational flexibility. This combination is motivating ongoing efforts within the Time Sensitive Networking (TSN) standardization committee to define admission control mechanisms for Ethernet. Existing mechanisms in TSN, like those of AVB, its predecessor, follow a distributed architecture that favors scalability. Conversely, the new mechanisms envisaged for TSN (IEEE 802.1Qcc) follow a (partially) centralized architecture, favoring short reconfiguration latency. This paper shows the first quantitative comparison between distributed and centralized admission control architectures concerning reconfiguration latency. Here, we compare AVB against a dynamic real-time reconfigurable Ethernet technology with centralized management, namely HaRTES. Our experiments show a significantly lower latency using the centralized architecture. We also observe the dependence of the distributed architecture in the end nodes' performance and the benefit of having a protected channel for the admission control transactions.This work was supported in part by the Spanish Agencia Estatal de Investigación (AEI), in part by the Fondo Europeo de Desarrollo Regional (FEDER) [AEI/FEDER, Unión Europea (UE)] under Grant TEC2015-70313-R, in part by the European Regional Development Fund (FEDER) through the Operational Programme for Competitivity and the Internationalization of Portugal 2020 Partnership Agreement (PRODUTECH-SIF) under Grant POCI-01-0247-FEDER-024541, and in part by the Research Centre Instituto de TelecomunicaçÔes under Grant UID/EEA/50008/2013.info:eu-repo/semantics/publishedVersio
    • 

    corecore