880 research outputs found

    Cognitive Video Streaming

    Get PDF
    Video-on-demand (VoD) streaming services are becoming increasingly popular due to their flexibility to allow users to access their favorite video contents anytime, anywhere from a wide range of access devices such as smart phones, computers and TV. The content providers rely on highly satisfied subscribers for revenue generation and there has been significant efforts in developing approaches to “estimate” the quality of experience (QoE) of VoD subscribers. But a key issue is that QoE is not defined, appropriate proxies needs to be found for QoE, via the streaming metrics (the quality of service (QoS) metrics) that are largely based on initial startup time, buffering delays, average bit rate and average throughput and other relevant factors such as the video content and user behavior and other external factors. The ultimate objective of the content provider is to elevate the QoE of all the subscribers at the cost of minimal network resources, such as hardware resources and bandwidth. We propose a cognitive video streaming strategy in order to ensure the QoE of subscribers while utilizing minimal network resources. The proposed cognitive video streaming architecture consists of an estimation module, a prediction module and an adaptation module. Then, we demonstrate the prediction module of the cognitive video streaming architecture through a play time prediction tool. For this purpose, the applicability of different machine learning algorithms such as k-nearest neighbor, neural network regression and survival models are experimented with; then, we develop an approach to identify the most relevant factors that contributed to the prediction. The proposed approaches are tested on data set provided by Comcast Cable

    QoE-Based Low-Delay Live Streaming Using Throughput Predictions

    Full text link
    Recently, HTTP-based adaptive streaming has become the de facto standard for video streaming over the Internet. It allows clients to dynamically adapt media characteristics to network conditions in order to ensure a high quality of experience, that is, minimize playback interruptions, while maximizing video quality at a reasonable level of quality changes. In the case of live streaming, this task becomes particularly challenging due to the latency constraints. The challenge further increases if a client uses a wireless network, where the throughput is subject to considerable fluctuations. Consequently, live streams often exhibit latencies of up to 30 seconds. In the present work, we introduce an adaptation algorithm for HTTP-based live streaming called LOLYPOP (Low-Latency Prediction-Based Adaptation) that is designed to operate with a transport latency of few seconds. To reach this goal, LOLYPOP leverages TCP throughput predictions on multiple time scales, from 1 to 10 seconds, along with an estimate of the prediction error distribution. In addition to satisfying the latency constraint, the algorithm heuristically maximizes the quality of experience by maximizing the average video quality as a function of the number of skipped segments and quality transitions. In order to select an efficient prediction method, we studied the performance of several time series prediction methods in IEEE 802.11 wireless access networks. We evaluated LOLYPOP under a large set of experimental conditions limiting the transport latency to 3 seconds, against a state-of-the-art adaptation algorithm from the literature, called FESTIVE. We observed that the average video quality is by up to a factor of 3 higher than with FESTIVE. We also observed that LOLYPOP is able to reach a broader region in the quality of experience space, and thus it is better adjustable to the user profile or service provider requirements.Comment: Technical Report TKN-16-001, Telecommunication Networks Group, Technische Universitaet Berlin. This TR updated TR TKN-15-00

    A multi-layer probing approach for video over 5G in vehicular scenarios

    Get PDF
    Fifth generation (5G) technologies are becoming a reality throughout the world. In parallel, vehicular networks rise their pace in terms of utilization; moreover, multimedia content transmissions are also getting an always increasing demand by their users. Besides the promised performance of 5G networks, several questions still arise among the community: are these networks capable of delivering high quality video streaming services in moving scenarios? What is the relationship between the network conditions and the video quality of experience? To answer to the previous questions, in this paper we propose a multi-layer probing approach able to assess video transmissions over 5G and 4G, combining data from all layers of a communication model, relating events from its origin layers. The probe's potential is thoroughly evaluated in two distinct video streaming use cases, both targeting a vehicular scenario supported by cellular 4G and 5G networks. Regarding the probe's performance, we show that a multitude of performance and quality indicators, from different stack layers, can be obtained. As for the performance of 4G and 5G networks in video streaming scenarios, the results have shown that the 5G links show a better overall performance in terms of video quality-of-experience, granting lower delays and jitter conditions, thus allowing video delay to be diminished and segment buffering to be better performed in comparison to 4G, while still showing adaptability in lightly traffic-saturated vehicular-to-vehicular scenarios.info:eu-repo/semantics/publishedVersio

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure

    Satellite-based delivery of educational content to geographically isolated communities: A service based approach

    Get PDF
    Enabling learning for members of geographically isolated communities presents benefits in terms of promoting regional development and cost savings for governments and companies. However, notwithstanding recent advances in e-Learning, from both technological and pedagogical perspectives, there are very few, if any, recognised methodologies for user-led design of satellite-based e-learning infrastructures. In this paper, we present a methodology for designing a satellite and wireless based network infrastructure and learning services to support distance learning for such isolated communities. This methodology entails (a) the involvement of community members in the development of targeted learning services from an early stage, and (b) a service-oriented approach to learning solution deployment. Results show, that, while the technological premises of distance learning can be accommodated by hybrid satellite/wireless infrastructures,this has to be complemented with (a) high-quality audio–visual educational material, and (b) the opportunity for community members to interact with other community members either as groups (common-room oriented scenarios) or individuals (home-based scenarios), thus providing an impetus for learner engagement in both formal and informal activities
    • …
    corecore