2 research outputs found

    Increased energy efficiency in LTE networks through reduced early handover

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Long Term Evolution (LTE) is enormously adopted by several mobile operators and has been introduced as a solution to fulfil ever-growing Users (UEs) data requirements in cellular networks. Enlarged data demands engage resource blocks over prolong time interval thus results into more dynamic power consumption at downlink in Basestation. Therefore, realisation of UEs requests come at the cost of increased power consumption which directly affects operator operational expenditures. Moreover, it also contributes in increased CO2 emissions thus leading towards Global Warming. According to research, Global Information and Communication Technology (ICT) systems consume approximately 1200 to 1800 Terawatts per hour of electricity annually. Importantly mobile communication industry is accountable for more than one third of this power consumption in ICT due to increased data requirements, number of UEs and coverage area. Applying these values to global warming, telecommunication is responsible for 0.3 to 0.4 percent of worldwide CO2 emissions. Moreover, user data volume is expected to increase by a factor of 10 every five years which results in 16 to 20 percent increase in associated energy consumption which directly effects our environment by enlarged global warming. This research work focuses on the importance of energy saving in LTE and initially propose bandwidth expansion based energy saving scheme which combines two resource blocks together to form single super RB, thereby resulting in reduced Physical Downlink Control Channel Overhead (PDCCH). Thus, decreased PDCCH overhead helps in reduced dynamic power consumption up to 28 percent. Subsequently, novel reduced early handover (REHO) based idea is proposed and combined with bandwidth expansion to form enhanced energy ii saving scheme. System level simulations are performed to investigate the performance of REHO scheme; it was found that reduced early handover provided around 35% improved energy saving while compared to LTE standard in 3rd Generation Partnership Project (3GPP) based scenario. Since there is a direct relationship between energy consumption, CO2 emissions and vendors operational expenditure (OPEX); due to reduced power consumption and increased energy efficiency, REHO subsequently proven to be a step towards greener communication with lesser CO2 footprint and reduced operational expenditure values. The main idea of REHO lies in the fact that it initiate handovers earlier and turn off freed resource blocks as compare to LTE standard. Therefore, the time difference (Transmission Time Intervals) between REHO based early handover and LTE standard handover is a key component for energy saving achieved, which is estimated through axiom of Euclidean geometry. Moreover, overall system efficiency is investigated through the analysis of numerous performance related parameters in REHO and LTE standard. This led to a key finding being made to guide the vendors about the choice of energy saving in relation to radio link failure and other important parameters

    Energy-efficient cooperative resource allocation for OFDMA

    Get PDF
    Energy is increasingly becoming an exclusive commodity in next generation wireless communication systems, where even in legacy systems, the mobile operators operational expenditure is largely attributed to the energy bill. However, as the amount of mobile traffic is expected to double over the next decade as we enter the Next Generation communications era, the need to address energy efficient protocols will be a priority. Therefore, we will need to revisit the design of the mobile network in order to adopt a proactive stance towards reducing the energy consumption of the network. Future emerging communication paradigms will evolve towards Next Generation mobile networks, that will not only consider a new air interface for high broadband connectivity, but will also integrate legacy communications (LTE/LTE-A, IEEE 802.11x, among others) networks to provide a ubiquitous communication platform, and one that can host a multitude of rich services and applications. In this context, one can say that the radio access network will predominantly be OFDMA based, providing the impetus for further research studies on how this technology can be further optimized towards energy efficiency. In fact, advanced approaches towards both energy and spectral efficient design will still dominate the research agenda. Taking a step towards this direction, LTE/LTE-A (Long Term Evolution-Advanced) have already investigated cooperative paradigms such as SON (self-Organizing Networks), Network Sharing, and CoMP (Coordinated Multipoint) transmission. Although these technologies have provided promising results, some are still in their infancy and lack an interdisciplinary design approach limiting their potential gain. In this thesis, we aim to advance these future emerging paradigms from a resource allocation perspective on two accounts. In the first scenario, we address the challenge of load balancing (LB) in OFDMA networks, that is employed to redistribute the traffic load in the network to effectively use spectral resources throughout the day. We aim to reengineer the load-balancing (LB) approach through interdisciplinary design to develop an integrated energy efficient solution based on SON and network sharing, what we refer to as SO-LB (Self-Organizing Load balancing). Obtained simulation results show that by employing SO-LB algorithm in a shared network, it is possible to achieve up to 15-20% savings in energy consumption when compared to LTE-A non-shared networks. The second approach considers CoMP transmission, that is currently used to enhance cell coverage and capacity at cell edge. Legacy approaches mainly consider fundamental scheduling policies towards assigning users for CoMP transmission. We build on these scheduling approaches towards a cross-layer design that provide enhanced resource utilization, fairness, and energy saving whilst maintaining low complexity, in particular for broadband applications
    corecore