268 research outputs found

    Texture Analysis and Machine Learning to Predict Pulmonary Ventilation from Thoracic Computed Tomography

    Get PDF
    Chronic obstructive pulmonary disease (COPD) leads to persistent airflow limitation, causing a large burden to patients and the health care system. Thoracic CT provides an opportunity to observe the structural pathophysiology of COPD, whereas hyperpolarized gas MRI provides images of the consequential ventilation heterogeneity. However, hyperpolarized gas MRI is currently limited to research centres, due to the high cost of gas and polarization equipment. Therefore, I developed a pipeline using texture analysis and machine learning methods to create predicted ventilation maps based on non-contrast enhanced, single-volume thoracic CT. In a COPD cohort, predicted ventilation maps were qualitatively and quantitatively related to ground-truth MRI ventilation, and both maps were related to important patient lung function and quality-of-life measures. This study is the first to demonstrate the feasibility of predicting hyperpolarized MRI-based ventilation from single-volume, breath-hold thoracic CT, which has potential to translate pulmonary ventilation information to widely available thoracic CT imaging

    Robust deep labeling of radiological emphysema subtypes using squeeze and excitation convolutional neural networks: The MESA Lung and SPIROMICS Studies

    Full text link
    Pulmonary emphysema, the progressive, irreversible loss of lung tissue, is conventionally categorized into three subtypes identifiable on pathology and on lung computed tomography (CT) images. Recent work has led to the unsupervised learning of ten spatially-informed lung texture patterns (sLTPs) on lung CT, representing distinct patterns of emphysematous lung parenchyma based on both textural appearance and spatial location within the lung, and which aggregate into 6 robust and reproducible CT Emphysema Subtypes (CTES). Existing methods for sLTP segmentation, however, are slow and highly sensitive to changes in CT acquisition protocol. In this work, we present a robust 3-D squeeze-and-excitation CNN for supervised classification of sLTPs and CTES on lung CT. Our results demonstrate that this model achieves accurate and reproducible sLTP segmentation on lung CTscans, across two independent cohorts and independently of scanner manufacturer and model

    Deep Learning of Unified Region, Edge, and Contour Models for Automated Image Segmentation

    Full text link
    Image segmentation is a fundamental and challenging problem in computer vision with applications spanning multiple areas, such as medical imaging, remote sensing, and autonomous vehicles. Recently, convolutional neural networks (CNNs) have gained traction in the design of automated segmentation pipelines. Although CNN-based models are adept at learning abstract features from raw image data, their performance is dependent on the availability and size of suitable training datasets. Additionally, these models are often unable to capture the details of object boundaries and generalize poorly to unseen classes. In this thesis, we devise novel methodologies that address these issues and establish robust representation learning frameworks for fully-automatic semantic segmentation in medical imaging and mainstream computer vision. In particular, our contributions include (1) state-of-the-art 2D and 3D image segmentation networks for computer vision and medical image analysis, (2) an end-to-end trainable image segmentation framework that unifies CNNs and active contour models with learnable parameters for fast and robust object delineation, (3) a novel approach for disentangling edge and texture processing in segmentation networks, and (4) a novel few-shot learning model in both supervised settings and semi-supervised settings where synergies between latent and image spaces are leveraged to learn to segment images given limited training data.Comment: PhD dissertation, UCLA, 202

    BRONCO: Automated modelling of the bronchovascular bundle using the Computed Tomography Images

    Full text link
    Segmentation of the bronchovascular bundle within the lung parenchyma is a key step for the proper analysis and planning of many pulmonary diseases. It might also be considered the preprocessing step when the goal is to segment the nodules from the lung parenchyma. We propose a segmentation pipeline for the bronchovascular bundle based on the Computed Tomography images, returning either binary or labelled masks of vessels and bronchi situated in the lung parenchyma. The method consists of two modules, modeling of the bronchial tree and vessels. The core revolves around a similar pipeline, the determination of the initial perimeter by the GMM method, skeletonization, and hierarchical analysis of the created graph. We tested our method on both low-dose CT and standard-dose CT, with various pathologies, reconstructed with various slice thicknesses, and acquired from various machines. We conclude that the method is invariant with respect to the origin and parameters of the CT series. Our pipeline is best suited for studies with healthy patients, patients with lung nodules, and patients with emphysema

    Deep Learning with Limited Labels for Medical Imaging

    Get PDF
    Recent advancements in deep learning-based AI technologies provide an automatic tool to revolutionise medical image computing. Training a deep learning model requires a large amount of labelled data. Acquiring labels for medical images is extremely challenging due to the high cost in terms of both money and time, especially for the pixel-wise segmentation task of volumetric medical scans. However, obtaining unlabelled medical scans is relatively easier compared to acquiring labels for those images. This work addresses the pervasive issue of limited labels in training deep learning models for medical imaging. It begins by exploring different strategies of entropy regularisation in the joint training of labelled and unlabelled data to reduce the time and cost associated with manual labelling for medical image segmentation. Of particular interest are consistency regularisation and pseudo labelling. Specifically, this work proposes a well-calibrated semi-supervised segmentation framework that utilises consistency regularisation on different morphological feature perturbations, representing a significant step towards safer AI in medical imaging. Furthermore, it reformulates pseudo labelling in semi-supervised learning as an Expectation-Maximisation framework. Building upon this new formulation, the work explains the empirical successes of pseudo labelling and introduces a generalisation of the technique, accompanied by variational inference to learn its true posterior distribution. The applications of pseudo labelling in segmentation tasks are also presented. Lastly, this work explores unsupervised deep learning for parameter estimation of diffusion MRI signals, employing a hierarchical variational clustering framework and representation learning

    Chronic Obstructive Pulmonary Disease: Thoracic CT Texture Analysis and Machine Learning to Predict Pulmonary Ventilation

    Get PDF
    Background Fixed airflow limitation and ventilation heterogeneity are common in chronic obstructive pulmonary disease (COPD). Conventional noncontrast CT provides airway and parenchymal measurements but cannot be used to directly determine lung function. Purpose To develop, train, and test a CT texture analysis and machine-learning algorithm to predict lung ventilation heterogeneity in participants with COPD. Materials and Methods In this prospective study

    Quantitative lung CT analysis for the study and diagnosis of Chronic Obstructive Pulmonary Disease

    Get PDF
    The importance of medical imaging in the research of Chronic Obstructive Pulmonary Dis- ease (COPD) has risen over the last decades. COPD affects the pulmonary system through two competing mechanisms; emphysema and small airways disease. The relative contribu- tion of each component varies widely across patients whilst they can also evolve regionally in the lung. Patients can also be susceptible to exacerbations, which can dramatically ac- celerate lung function decline. Diagnosis of COPD is based on lung function tests, which measure airflow limitation. There is a growing consensus that this is inadequate in view of the complexities of COPD. Computed Tomography (CT) facilitates direct quantification of the pathological changes that lead to airflow limitation and can add to our understanding of the disease progression of COPD. There is a need to better capture lung pathophysiology whilst understanding regional aspects of disease progression. This has motivated the work presented in this thesis. Two novel methods are proposed to quantify the severity of COPD from CT by analysing the global distribution of features sampled locally in the lung. They can be exploited in the classification of lung CT images or to uncover potential trajectories of disease progression. A novel lobe segmentation algorithm is presented that is based on a probabilistic segmen- tation of the fissures whilst also constructing a groupwise fissure prior. In combination with the local sampling methods, a pipeline of analysis was developed that permits a re- gional analysis of lung disease. This was applied to study exacerbation susceptible COPD. Lastly, the applicability of performing disease progression modelling to study COPD has been shown. Two main subgroups of COPD were found, which are consistent with current clinical knowledge of COPD subtypes. This research may facilitate precise phenotypic characterisation of COPD from CT, which will increase our understanding of its natural history and associated heterogeneities. This will be instrumental in the precision medicine of COPD
    corecore