8 research outputs found

    An Empirical Evaluation on Robustness and Uncertainty of Regularization Methods

    Full text link
    Despite apparent human-level performances of deep neural networks (DNN), they behave fundamentally differently from humans. They easily change predictions when small corruptions such as blur and noise are applied on the input (lack of robustness), and they often produce confident predictions on out-of-distribution samples (improper uncertainty measure). While a number of researches have aimed to address those issues, proposed solutions are typically expensive and complicated (e.g. Bayesian inference and adversarial training). Meanwhile, many simple and cheap regularization methods have been developed to enhance the generalization of classifiers. Such regularization methods have largely been overlooked as baselines for addressing the robustness and uncertainty issues, as they are not specifically designed for that. In this paper, we provide extensive empirical evaluations on the robustness and uncertainty estimates of image classifiers (CIFAR-100 and ImageNet) trained with state-of-the-art regularization methods. Furthermore, experimental results show that certain regularization methods can serve as strong baseline methods for robustness and uncertainty estimation of DNNs.Comment: Accepted at ICML 2019 Workshop on Uncertainty and Robustness in Deep Learning. 7 pages, 1 figur

    Improved Robustness to Open Set Inputs via Tempered Mixup

    Full text link
    Supervised classification methods often assume that evaluation data is drawn from the same distribution as training data and that all classes are present for training. However, real-world classifiers must handle inputs that are far from the training distribution including samples from unknown classes. Open set robustness refers to the ability to properly label samples from previously unseen categories as novel and avoid high-confidence, incorrect predictions. Existing approaches have focused on either novel inference methods, unique training architectures, or supplementing the training data with additional background samples. Here, we propose a simple regularization technique easily applied to existing convolutional neural network architectures that improves open set robustness without a background dataset. Our method achieves state-of-the-art results on open set classification baselines and easily scales to large-scale open set classification problems.Comment: Proceedings of the ECCV 2020 Workshop on Adversarial Robustness in the Real Worl

    AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

    Full text link
    Modern deep neural networks can achieve high accuracy when the training distribution and test distribution are identically distributed, but this assumption is frequently violated in practice. When the train and test distributions are mismatched, accuracy can plummet. Currently there are few techniques that improve robustness to unforeseen data shifts encountered during deployment. In this work, we propose a technique to improve the robustness and uncertainty estimates of image classifiers. We propose AugMix, a data processing technique that is simple to implement, adds limited computational overhead, and helps models withstand unforeseen corruptions. AugMix significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance in some cases by more than half.Comment: Code available at https://github.com/google-research/augmi

    Self-Knowledge Distillation: A Simple Way for Better Generalization

    Full text link
    The generalization capability of deep neural networks has been substantially improved by applying a wide spectrum of regularization methods, e.g., restricting function space, injecting randomness during training, augmenting data, etc. In this work, we propose a simple yet effective regularization method named self-knowledge distillation (Self-KD), which progressively distills a model's own knowledge to soften hard targets (i.e., one-hot vectors) during training. Hence, it can be interpreted within a framework of knowledge distillation as a student becomes a teacher itself. The proposed method is applicable to any supervised learning tasks with hard targets and can be easily combined with existing regularization methods to further enhance the generalization performance. Furthermore, we show that Self-KD achieves not only better accuracy, but also provides high quality of confidence estimates. Extensive experimental results on three different tasks, image classification, object detection, and machine translation, demonstrate that our method consistently improves the performance of the state-of-the-art baselines, and especially, it achieves state-of-the-art BLEU score of 30.0 and 36.2 on IWSLT15 English-to-German and German-to-English tasks, respectively.Comment: Under revie

    The Dilemma Between Data Transformations and Adversarial Robustness for Time Series Application Systems

    Full text link
    Adversarial examples, or nearly indistinguishable inputs created by an attacker, significantly reduce machine learning accuracy. Theoretical evidence has shown that the high intrinsic dimensionality of datasets facilitates an adversary's ability to develop effective adversarial examples in classification models. Adjacently, the presentation of data to a learning model impacts its performance. For example, we have seen this through dimensionality reduction techniques used to aid with the generalization of features in machine learning applications. Thus, data transformation techniques go hand-in-hand with state-of-the-art learning models in decision-making applications such as intelligent medical or military systems. With this work, we explore how data transformations techniques such as feature selection, dimensionality reduction, or trend extraction techniques may impact an adversary's ability to create effective adversarial samples on a recurrent neural network. Specifically, we analyze it from the perspective of the data manifold and the presentation of its intrinsic features. Our evaluation empirically shows that feature selection and trend extraction techniques may increase the RNN's vulnerability. A data transformation technique reduces the vulnerability to adversarial examples only if it approximates the dataset's intrinsic dimension, minimizes codimension, and maintains higher manifold coverage

    Frustratingly Easy Uncertainty Estimation for Distribution Shift

    Full text link
    Distribution shift is an important concern in deep image classification, produced either by corruption of the source images, or a complete change, with the solution involving domain adaptation. While the primary goal is to improve accuracy under distribution shift, an important secondary goal is uncertainty estimation: evaluating the probability that the prediction of a model is correct. While improving accuracy is hard, uncertainty estimation turns out to be frustratingly easy. Prior works have appended uncertainty estimation into the model and training paradigm in various ways. Instead, we show that we can estimate uncertainty by simply exposing the original model to corrupted images, and performing simple statistical calibration on the image outputs. Our frustratingly easy methods demonstrate superior performance on a wide range of distribution shifts as well as on unsupervised domain adaptation tasks, measured through extensive experimentation.Comment: 17 pages, 4 Tables, 9 Figure

    AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights

    Full text link
    Normalization techniques are a boon for modern deep learning. They let weights converge more quickly with often better generalization performances. It has been argued that the normalization-induced scale invariance among the weights provides an advantageous ground for gradient descent (GD) optimizers: the effective step sizes are automatically reduced over time, stabilizing the overall training procedure. It is often overlooked, however, that the additional introduction of momentum in GD optimizers results in a far more rapid reduction in effective step sizes for scale-invariant weights, a phenomenon that has not yet been studied and may have caused unwanted side effects in the current practice. This is a crucial issue because arguably the vast majority of modern deep neural networks consist of (1) momentum-based GD (e.g. SGD or Adam) and (2) scale-invariant parameters. In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances. We propose a simple and effective remedy, SGDP and AdamP: get rid of the radial component, or the norm-increasing direction, at each optimizer step. Because of the scale invariance, this modification only alters the effective step sizes without changing the effective update directions, thus enjoying the original convergence properties of GD optimizers. Given the ubiquity of momentum GD and scale invariance in machine learning, we have evaluated our methods against the baselines on 13 benchmarks. They range from vision tasks like classification (e.g. ImageNet), retrieval (e.g. CUB and SOP), and detection (e.g. COCO) to language modelling (e.g. WikiText) and audio classification (e.g. DCASE) tasks. We verify that our solution brings about uniform gains in those benchmarks. Source code is available at https://github.com/clovaai/AdamP.Comment: Accepted at ICLR 2021. First two authors contributed equall

    Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift

    Full text link
    Covariate shift has been shown to sharply degrade both predictive accuracy and the calibration of uncertainty estimates for deep learning models. This is worrying, because covariate shift is prevalent in a wide range of real world deployment settings. However, in this paper, we note that frequently there exists the potential to access small unlabeled batches of the shifted data just before prediction time. This interesting observation enables a simple but surprisingly effective method which we call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift. Using this one line code change, we achieve state-of-the-art on recent covariate shift benchmarks and an mCE of 60.28\% on the challenging ImageNet-C dataset; to our knowledge, this is the best result for any model that does not incorporate additional data augmentation or modification of the training pipeline. We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness (e.g. deep ensembles) and combining the two further improves performance. Our findings are supported by detailed measurements of the effect of this strategy on model behavior across rigorous ablations on various dataset modalities. However, the method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift, and is therefore worthy of additional study. We include links to the data in our figures to improve reproducibility, including a Python notebooks that can be run to easily modify our analysis at https://colab.research.google.com/drive/11N0wDZnMQQuLrRwRoumDCrhSaIhkqjof
    corecore