15 research outputs found

    Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-Based Approach

    Full text link
    Finding joinable tables in data lakes is key procedure in many applications such as data integration, data augmentation, data analysis, and data market. Traditional approaches that find equi-joinable tables are unable to deal with misspellings and different formats, nor do they capture any semantic joins. In this paper, we propose PEXESO, a framework for joinable table discovery in data lakes. We embed textual values as high-dimensional vectors and join columns under similarity predicates on high-dimensional vectors, hence to address the limitations of equi-join approaches and identify more meaningful results. To efficiently find joinable tables with similarity, we propose a block-and-verify method that utilizes pivot-based filtering. A partitioning technique is developed to cope with the case when the data lake is large and the index cannot fit in main memory. An experimental evaluation on real datasets shows that our solution identifies substantially more tables than equi-joins and outperforms other similarity-based options, and the join results are useful in data enrichment for machine learning tasks. The experiments also demonstrate the efficiency of the proposed method.Comment: Full version of paper in ICDE 202

    FINEX: A Fast Index for Exact & Flexible Density-Based Clustering (Extended Version with Proofs)*

    Full text link
    Density-based clustering aims to find groups of similar objects (i.e., clusters) in a given dataset. Applications include, e.g., process mining and anomaly detection. It comes with two user parameters ({\epsilon}, MinPts) that determine the clustering result, but are typically unknown in advance. Thus, users need to interactively test various settings until satisfying clusterings are found. However, existing solutions suffer from the following limitations: (a) Ineffective pruning of expensive neighborhood computations. (b) Approximate clustering, where objects are falsely labeled noise. (c) Restricted parameter tuning that is limited to {\epsilon} whereas MinPts is constant, which reduces the explorable clusterings. (d) Inflexibility in terms of applicable data types and distance functions. We propose FINEX, a linear-space index that overcomes these limitations. Our index provides exact clusterings and can be queried with either of the two parameters. FINEX avoids neighborhood computations where possible and reduces the complexities of the remaining computations by leveraging fundamental properties of density-based clusters. Hence, our solution is effcient and flexible regarding data types and distance functions. Moreover, FINEX respects the original and straightforward notion of density-based clustering. In our experiments on 12 large real-world datasets from various domains, FINEX frequently outperforms state-of-the-art techniques for exact clustering by orders of magnitude

    GB-KMV: An Augmented KMV Sketch for Approximate Containment Similarity Search

    Full text link
    In this paper, we study the problem of approximate containment similarity search. Given two records Q and X, the containment similarity between Q and X with respect to Q is |Q intersect X|/ |Q|. Given a query record Q and a set of records S, the containment similarity search finds a set of records from S whose containment similarity regarding Q are not less than the given threshold. This problem has many important applications in commercial and scientific fields such as record matching and domain search. Existing solution relies on the asymmetric LSH method by transforming the containment similarity to well-studied Jaccard similarity. In this paper, we use a different framework by transforming the containment similarity to set intersection. We propose a novel augmented KMV sketch technique, namely GB-KMV, which is data-dependent and can achieve a good trade-off between the sketch size and the accuracy. We provide a set of theoretical analysis to underpin the proposed augmented KMV sketch technique, and show that it outperforms the state-of-the-art technique LSH-E in terms of estimation accuracy under practical assumption. Our comprehensive experiments on real-life datasets verify that GB-KMV is superior to LSH-E in terms of the space-accuracy trade-off, time-accuracy trade-off, and the sketch construction time. For instance, with similar estimation accuracy (F-1 score), GB-KMV is over 100 times faster than LSH-E on some real-life dataset
    corecore